C. Leterrier, P. Dubey, and S. Roy, The nano-architecture of the axonal cytoskeleton, Nat. Rev. Neurosci, vol.18, pp.713-726, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01701366

R. P. Tas and L. C. Kapitein, Exploring cytoskeletal diversity in neurons, Science, vol.361, pp.231-232, 2018.

A. Peters, S. L. Palay, and H. D. Webster, The fine structure of the nervous system, 1991.

M. Papandréou and C. Leterrier, The functional architecture of axonal actin, Mol. Cell Neurosci, vol.91, pp.151-159, 2018.

Y. M. Sigal, R. Zhou, and X. Zhuang, Visualizing and discovering cellular structures with super-resolution microscopy, Science, vol.361, pp.880-887, 2018.

K. Xu, G. Zhong, and X. Zhuang, Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons, Science, vol.339, pp.452-456, 2013.

G. Zhong, Developmental mechanism of the periodic membrane skeleton in axons, vol.3, p.194, 2014.

E. D'este, D. Kamin, F. Göttfert, A. El-hady, and S. W. Hell, STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons, Cell Rep, vol.10, pp.1246-1251, 2015.

C. Leterrier, Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold, Cell Rep, vol.13, pp.2781-2793, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01474319

E. D'este, Subcortical cytoskeleton periodicity throughout the nervous system, Sci. Rep, vol.6, p.22741, 2016.

J. He, Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species, Proc. Natl Acad. Sci. USA, vol.113, pp.6029-6034, 2016.

N. Unsain, F. D. Stefani, and A. Caceres, The actin/spectrin membraneassociated periodic skeleton in neurons, Front. Synaptic Neurosci, vol.10, p.10, 2018.

P. Dubey, K. Jorgenson, and S. Roy, Actin assemblies in the axon shaft -some open questions, Curr. Opin. Neurobiol, vol.51, pp.163-167, 2018.

M. Krieg, Genetic defects in ?-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling, vol.6, p.1187, 2017.

R. Zhou, B. Han, C. Xia, and X. Zhuang, Membrane-associated periodic skeleton is a signaling platform for RTK transactivation in neurons, Science, vol.365, pp.929-934, 2019.

S. L. Jones, F. Korobova, and T. Svitkina, Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments, J. Cell Biol, vol.205, pp.67-81, 2014.

N. Schrod, Pleomorphic linkers as ubiquitous structural organizers of vesicles in axons, PLoS ONE, vol.13, p.197886, 2018.

J. Heuser, The production of 'cell cortices' for light and electron microscopy, Traffic, vol.1, pp.545-552, 2000.

M. R. Galiano, A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly, Cell, vol.149, pp.1125-1139, 2012.

K. Watanabe, Networks of polarized actin filaments in the axon initial segment provide a mechanism for sorting axonal and dendritic proteins, Cell Rep, vol.2, pp.1546-1553, 2012.

J. E. Heuser and M. W. Kirschner, Filament organization revealed in platinum replicas of freeze-dried cytoskeletons, J. Cell Biol, vol.86, pp.212-234, 1980.

C. Leterrier, The axon initial segment: an updated viewpoint, J. Neurosci, vol.38, pp.2135-2145, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01736917

J. E. Heuser, Procedure for freeze-drying molecules adsorbed to mica flakes, J. Mol. Biol, vol.169, pp.155-195, 1983.

L. Blanchoin, R. Boujemaa-paterski, C. Sykes, and J. Plastino, Actin dynamics, architecture, and mechanics in cell motility, Physiol. Rev, vol.94, pp.235-263, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00943523

S. C. Leite, The actin-binding protein ?-adducin is required for maintaining axon diameter, Cell Rep, vol.15, pp.490-498, 2016.

V. Bennett, J. Q. Davis, and W. E. Fowler, Brain spectrin, a membraneassociated protein related in structure and function to erythrocyte spectrin, Nature, vol.299, pp.126-131, 1982.

S. L. Berger, Localized myosin II activity regulates assembly and plasticity of the axon initial segment, Neuron, vol.97, pp.555-570, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01701359

A. Abouelezz, Tropomyosin Tpm3.1 is required to maintain the structure and function of the axon initial segment, 2019.

T. Wang, Radial contractility of actomyosin-II rings facilitates cargo trafficking and maintains axonal structural stability following cargo-induced transient axonal expansion, 2019.

K. Hedstrom, Neurofascin assembles a specialized extracellular matrix at the axon initial segment, J. Cell Biol, vol.178, pp.875-886, 2007.

J. Sobotzik, AnkyrinG is required to maintain axo-dendritic polarity in vivo, Proc. Natl Acad. Sci. USA, vol.106, pp.17564-17569, 2009.

P. M. Jenkins, Giant ankyrin-G: a critical innovation in vertebrate evolution of fast and integrated neuronal signaling, Proc. Natl Acad. Sci. USA, vol.112, pp.957-964, 2015.

C. Leterrier, End-binding proteins EB3 and EB1 link microtubules to ankyrin G in the axon initial segment, Proc. Natl Acad. Sci. USA, vol.108, pp.8826-8831, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01701551

A. Fréal, Cooperative interactions between 480 kDa ankyrin-G and EB proteins assemble the axon initial segment, J. Neurosci, vol.36, pp.4421-4433, 2016.

A. Abouelezz, D. Micinski, A. Lipponen, and P. Hotulainen, Sub-membranous actin rings in the axon initial segment are resistant to the action of latrunculin, Biol. Chem, vol.400, pp.1141-1146, 2019.

I. Spector, F. Braet, N. R. Shochet, and M. R. Bubb, New anti-actin drugs in the study of the organization and function of the actin cytoskeleton, Microsc. Res. Tech, vol.47, pp.18-37, 1999.

P. M. Sörensen, The natural product cucurbitacin E inhibits depolymerization of actin filaments, ACS Chem. Biol, vol.7, pp.1502-1508, 2012.

N. Unsain, Remodeling of the actin/spectrin membrane-associated periodic skeleton, growth cone collapse and F-actin decrease during axonal degeneration, Sci. Rep, vol.8, p.3007, 2018.

K. A. Sochacki, G. Shtengel, S. B. Van-engelenburg, H. F. Hess, and J. W. Taraska, Correlative super-resolution fluorescence and metal-replica transmission electron microscopy, Nat. Methods, vol.11, pp.305-308, 2014.

S. C. Leite and M. M. Sousa, The neuronal and actin commitment: why do neurons need rings?, Cytoskeleton, vol.73, pp.424-434, 2016.

Y. Zhang, Modeling of the axon membrane skeleton structure and implications for its mechanical properties, PLoS Comput. Biol, vol.13, p.1005407, 2017.

P. A. Kuhlman, C. A. Hughes, V. Bennett, and V. M. Fowler, A new function for adducin. Calcium/calmodulin-regulated capping of the barbed ends of actin filaments, J. Biol. Chem, vol.271, pp.7986-7991, 1996.

K. Gardner and V. Bennett, Modulation of spectrin-actin assembly by erythrocyte adducin, Nature, vol.328, pp.359-362, 1987.

A. Michelot, Actin-filament stochastic dynamics mediated by ADF/ cofilin, Curr. Biol, vol.17, pp.825-833, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00146683

J. N. Sleigh, A. M. Rossor, A. D. Fellows, A. P. Tosolini, and G. Schiavo, Axonal transport and neurological disease, Nat. Rev. Neurol, vol.334, p.16, 2019.

S. E. Encalada and L. S. Goldstein, Biophysical challenges to axonal transport: motor-cargo deficiencies and neurodegeneration, Annu. Rev. Biophys, vol.43, pp.141-169, 2014.

J. Schnitzbauer, M. T. Strauss, T. Schlichthaerle, F. Schueder, and R. Jungmann, Super-resolution microscopy with DNA-PAINT, Nat. Protoc, vol.12, pp.1198-1228, 2017.

S. Kaech and G. A. Banker, Culturing hippocampal neurons, Nat. Protoc, vol.1, pp.2406-2415, 2006.

A. Jimenez, K. Friedl, and C. Leterrier, About samples, giving examples: optimized single molecule localization microscopy, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02146929

M. Ovesny, P. K?i?ek, J. Borkovec, Z. Svindrych, and G. M. Hagen, ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging, Bioinformatics, vol.30, pp.2389-2390, 2014.

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.

E. Meijering, Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images, Cytom. A, vol.58, pp.167-176, 2004.

P. Paul-gilloteaux, eC-CLEM: flexible multidimensional registration software for correlative microscopies, Nat. Methods, vol.14, pp.102-103, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01712184