, Millipore Sigma Cat# MABN1153), rabbit polyclonal antibody anti-Septin, vol.5

. Ibl-america, RRID:AB_1540782), rabbit polyclonal antibody anti-Septin, vol.6, p.500, 18921.

, RRID:AB_2184999), rabbit polyclonal antibody anti-Septin, vol.7, 0200.

J. Ibl-america-cat#, Millipore Sigma Cat# ABN1342), mouse monoclonal antibody anti-FLAG (1:500; Millipore Sigma Cat# F1804, RRID: AB_1630825), rabbit polyclonal antibody anti-Septin, vol.11, p.1000

. Biolegend, RRID:AB_2148451), mouse monoclonal antibody anti-HA, vol.626802, p.1000

, RRID:AB_2315634) was generated against the peptide sequence DRAEELPRRRRPERQE (in the C-terminal "specific domain" of ?4 spectrin), mouse monoclonal antibody anti-?2-spectrin (1:1000; B&D Systems Cat# 612563, RRID:AB_2565005), rabbit polycolonal antibody anti-?4-spectrin, p.1000

, RRID:AB_2564660). Mouse monoclonal anti-AnkyrinG, vol.803201, p.500

, Cat# N106/36, RRID:AB_10673030 and N106/65, RRID: AB_10675130), anti-Neurofascin, p.500

, A12/18, AB_2282826), and anti-GST, 2000.

, N100/13, AB_10671818) antibodies were purchased from the UC Davis/ NIH NeuroMab Facility, p.700

T. Fisher-scientific, Cat# A-11122, RRID:AB_221569), mouse monoclonal antibody anti-Klc1, p.500

, RRID: AB_2280879), mouse monoclonal antibody anti-Kif5A, p.1000

, Santa Cruz Biotechnology Cat# sc-376452, RRID:AB_11150294), rabbit polyclonal antibody anti-Macf1

, RRID:AB_2139238), rabbit polyclonal antibody anti-Ranbp2, vol.68428

B. Cat# and A. , Utrecht University), mouse monoclonal antibody anti-Mical3 (1:500; a gift from Dr, RRID: AB_1211503), rabbit anti-Mical3, p.400

, RRID:AB_2140993), mouse monoclonal antibody anti-Tuba1a, vol.4265, p.1000

, Millipore Sigma Cat# SAB1411824), rabbit monoclonal antibody anti-Tuba4a (1:1000; abcam Cat# EPR13477(B)), mouse monoclonal antibody to Tubb3, p.1000

M. Cat# and M. , RRID: AB_2210524), mouse monoclonal antibody anti-Tubb5, p.1000

M. Sigma, Cat# SAB1305556), rabbit polyclonal antibody anti-GAPDH, 2000.

M. Sigma-cat#g9545, RRID:AB_796208). Chicken antibodies to: MAP2, p.1000

C. Encor, RRID:AB_2138173) and Neurofascin (1:1000; R&D Systems Cat#AF3235, RRID:AB_10890736). Aminomethylcoumarin (AMCA)

, Anti-mouse horseradish peroxidase (HRP)-labeled secondary antibody (1:1000; GE Healthcare, Cat# NA9310V, RRID:AB_7721983) and anti-rabbit HRP antibody (1:1000; 111-035-003, Jackson Laboratory; RRID:AB_2313567). Streptavidin, Alexa Fluor 488 and 594 conjugates were purchased from, Alexa Fluor 488, and Alexa Fluor 594 conjugated secondary antibodies were purchased from Thermo Fisher Scientific (all 1:1000), 2000.

, For actin visualization, DIV 14 cells were fixed with 4% paraformaldehyde pH = 7.5 for 10 min, then permeabilized for 1 h PBGTS

, Acti-stain 555 Fluorescent Phalloidin (Amanita phalloides) Cytoskeleton, Inc, Denver, CO Cat# PHDH1), taken from a 14 ?M stock prepared according to the manufacturer's instructions. Staining of neurons was done on all cultures at the same time and with the same reagents for each experiment. To count actin patches, experimenters were blinded to the plasmid transfection (except for the case of no transfection since there was no red fluorescent protein (RFP) signal). Images of AIS in neurons with RFP were then taken at 63×. The images were then randomized, and the number of actin patches along each AIS were counted, Triton, followed by 1 h of dye-loading with 100 nM Acti-stain 488 Fluorescent Phalloidin (Amanita phalloides

, Primary cultures of hippocampal neurons were obtained from E18

, Life Technologies) at a density of 4800 cells/cm 2 . Hippocampal neurons were cultured in Neurobasal medium (Life Technologies) containing 1% Glutamax (Life Technologies), 1% penicillin and streptomycin (Life Technologies), and 2% B27 supplement (Life Technologies) in an incubator with 5% CO 2 . Transfection of hippocampal neurons was performed using Lipofectamine, Sprague-Dawley rat embryos. Hippocampi were dissected and dissociated. Neurons were then plated onto Poly-D-Lysine (Sigma) and laminin-coated glass coverslips, vol.53, 2000.

M. H. Kole, Action potential generation requires a high sodium channel density in the axon initial segment, Nat. Neurosci, vol.11, pp.178-186, 2008.

B. Winckler, P. Forscher, and I. Mellman, A diffusion barrier maintains distribution of membrane proteins in polarized neurons, Nature, vol.397, pp.698-701, 1999.

A. H. Song, A selective filter for cytoplasmic transport at the axon initial segment, Cell, vol.136, pp.1148-1160, 2009.

C. Nakada, Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization, Nat. Cell Biol, vol.5, pp.626-632, 2003.

D. Zhou, AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing, J. Cell Biol, vol.143, pp.1295-1304, 1998.

Z. Pan, A common ankyrin-G-based mechanism retains KCNQ and Nav channels at electrically active domains of the axon, J. Neurosci, vol.26, pp.2599-2613, 2006.

K. L. Hedstrom, Y. Ogawa, and M. N. Rasband, AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity, J. Cell Biol, vol.183, pp.635-640, 2008.

Z. Iqbal, Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and psychiatric disorders, Hum. Mol. Genet, vol.22, pp.1960-1970, 2013.

C. C. Wang, betaIV spectrinopathies cause profound intellectual disability, congenital hypotonia, and motor axonal neuropathy, Am. J. Hum. Genet, vol.102, pp.1158-1168, 2018.

D. P. Schafer, Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury, J. Neurosci, vol.29, pp.13242-13254, 2009.

K. C. Clark, Compromised axon initial segment integrity in EAE is preceded by microglial reactivity and contact, Glia, vol.64, pp.1190-1209, 2016.

C. Leterrier, The axon initial segment: an updated viewpoint, J. Neurosci, vol.38, pp.2135-2145, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01736917

M. H. Kole and G. J. Stuart, Signal processing in the axon initial segment, Neuron, vol.73, pp.235-247, 2012.

M. Xu and E. C. Cooper, An ankyrin-G N-terminal gate and protein kinase CK2 dually regulate binding of voltage-gated sodium and KCNQ2/3 potassium channels, J. Biol. Chem, vol.290, pp.16619-16632, 2015.

J. J. Garrido, A targeting motif involved in sodium channel clustering at the axonal initial segment, Science, vol.300, pp.2091-2094, 2003.

G. G. Farias, C. M. Guardia, D. J. Britt, X. Guo, and J. S. Bonifacino, Sorting of dendritic and axonal vesicles at the pre-axonal exclusion zone, Cell Rep, vol.13, pp.1221-1232, 2015.

V. Balasanyan, Structure and function of an actin-based filter in the proximal axon, Cell Rep, vol.21, pp.2696-2705, 2017.

S. L. Berger, Localized myosin II activity regulates assembly and plasticity of the axon initial segment, Neuron, vol.97, pp.555-570, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01701359

S. F. Van-beuningen, TRIM46 controls neuronal polarity and axon specification by driving the formation of parallel microtubule arrays, Neuron, vol.88, pp.1208-1226, 2015.

M. Kuijpers, Dynein regulator NDEL1 controls polarized cargo transport at the axon initial segment, Neuron, vol.89, pp.461-471, 2016.

C. Y. Huang, alphaII spectrin forms a periodic cytoskeleton at the axon initial segment and is required for nervous system function, J. Neurosci, vol.37, pp.11311-11322, 2017.

K. J. Roux, D. I. Kim, and B. Burke, BioID: a screen for protein-protein interactions, Curr. Protoc. Protein Sci, vol.74, p.23, 2013.

D. I. Kim, Probing nuclear pore complex architecture with proximitydependent biotinylation, Proc. Natl Acad. Sci. USA, vol.111, pp.2453-2461, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01059687

D. N. Papageorgiou, J. Demmers, and J. Strouboulis, NP-40 reduces contamination by endogenous biotinylated carboxylases during purification of biotin tagged nuclear proteins, Protein Expr. Purif, vol.89, pp.80-83, 2013.

S. Tuvia, T. D. Garver, and V. Bennett, The phosphorylation state of the FIGQY tyrosine of neurofascin determines ankyrin-binding activity and patterns of cell segregation, Proc. Natl Acad. Sci. USA, vol.94, pp.12957-12962, 1997.

K. Chen, J. Li, C. Wang, Z. Wei, and M. Zhang, Autoinhibition of ankyrin-B/G membrane target bindings by intrinsically disordered segments from the tail regions, vol.6, p.29150, 2017.

M. R. Galiano, A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly, Cell, vol.149, pp.1125-1139, 2012.

E. Lazarov, An axon initial segment is required for temporal precision in action potential encoding by neuronal populations, Sci. Adv, vol.4, p.8621, 2018.

P. Shannon, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res, vol.13, pp.2498-2504, 2003.

D. Szklarczyk, The STRING database in 2017: quality-controlled proteinprotein association networks, made broadly accessible, Nucl. Acids Res, vol.45, pp.362-368, 2017.

L. T. Alto, J. R. Terman, and . Micals, Curr. Biol, vol.28, pp.538-541, 2018.

S. S. Giridharan, J. L. Rohn, N. Naslavsky, and S. Caplan, Differential regulation of actin microfilaments by human MICAL proteins, J. Cell Sci, vol.125, pp.614-624, 2012.

S. J. Sahl and W. E. Moerner, Super-resolution fluorescence imaging with single molecules, Curr. Opin. Struct. Biol, vol.23, pp.778-787, 2013.

R. Jungmann, Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT, Nat. methods, vol.11, pp.313-318, 2014.

Q. Liu, MICAL3 flavoprotein monooxygenase forms a complex with centralspindlin and regulates cytokinesis, J. Biol. Chem, vol.291, pp.20617-20629, 2016.

T. Suzuki, MICAL, a novel CasL interacting molecule, associates with vimentin, J. Biol. Chem, vol.277, pp.14933-14941, 2002.

B. C. Lee, MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation, Mol. Cell, vol.51, pp.397-404, 2013.

S. Fremont, Oxidation of F-actin controls the terminal steps of cytokinesis, Nat. Commun, vol.8, p.14528, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01492528

M. Fukuda, E. Kanno, K. Ishibashi, and T. Itoh, Large scale screening for novel rab effectors reveals unexpected broad Rab binding specificity, Mol. Cell. Proteom.: MCP, vol.7, pp.1031-1042, 2008.

I. Grigoriev, Rab6, Rab8, and MICAL3 cooperate in controlling docking and fusion of exocytotic carriers, Curr. Biol, vol.21, pp.967-974, 2011.

E. T. Spiliotis, Spatial effects-site-specific regulation of actin and microtubule organization by septin GTPases, J. Cell Sci, vol.131, p.207555, 2018.

C. Leterrier, Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold, Cell Rep, vol.13, pp.2781-2793, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01474319

A. Uezu, Identification of an elaborate complex mediating postsynaptic inhibition, Science, vol.353, pp.1123-1129, 2016.

U. Derewenda, The structure of the coiled-coil domain of Ndel1 and the basis of its interaction with Lis1, the causal protein of Miller-Dieker lissencephaly, Structure, vol.15, pp.1467-1481, 2007.

S. R. Ainavarapu, Contour length and refolding rate of a small protein controlled by engineered disulfide bonds, Biophys. J, vol.92, pp.225-233, 2007.

E. Tortosa, Dynamic palmitoylation targets MAP6 to the axon to promote microtubule stabilization during neuronal polarization, Neuron, vol.94, p.807, 2017.

D. E. Neilson, Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2, Am. J. Hum. Genet, vol.84, pp.44-51, 2009.

Y. Cai, B. B. Singh, A. Aslanukov, H. Zhao, and P. A. Ferreira, The docking of kinesins, KIF5B and KIF5C, to Ran-binding protein 2 (RanBP2) is mediated via a novel RanBP2 domain, J. Biol. Chem, vol.276, pp.41594-41602, 2001.

J. J. Moffat, M. Ka, E. M. Jung, A. L. Smith, and W. Y. Kim, The role of MACF1 in nervous system development and maintenance, Semin Cell Dev. Biol, vol.69, pp.9-17, 2017.

S. L. Palay, C. Sotelo, A. Peters, and P. M. Orkand, The axon hillock and the initial segment, J. Cell Biol, vol.38, pp.193-201, 1968.

K. H. Loh, Proteomic analysis of unbounded cellular compartments: synaptic clefts, Cell, vol.166, p.1221, 2016.

A. D. Nelson and P. M. Jenkins, Axonal membranes and their domains: assembly and function of the axon initial segment and node of ranvier, Front. Cell. Neurosci, vol.11, p.136, 2017.

K. L. Hedstrom, Neurofascin assembles a specialized extracellular matrix at the axon initial segment, J. Cell Biol, vol.178, pp.875-886, 2007.

Y. Tai, N. B. Gallo, M. Wang, J. R. Yu, and L. Van-aelst, Axo-axonic innervation of neocortical pyramidal neurons by GABAergic chandelier cells requires AnkyrinG-associated L1CAM, Neuron, vol.102, pp.358-372, 2019.

P. M. Jenkins, Giant ankyrin-G: a critical innovation in vertebrate evolution of fast and integrated neuronal signaling, Proc. Natl Acad. Sci. USA, vol.112, pp.957-964, 2015.

S. A. Buffington, J. M. Sobotzik, C. Schultz, and M. N. Rasband, IkappaBalpha is not required for axon initial segment assembly, Mol. Cell Neurosci, vol.50, pp.1-9, 2012.

A. A. Bridges and A. S. Gladfelter, Septin form and function at the cell cortex, J. Biol. Chem, vol.290, pp.17173-17180, 2015.

C. W. Tsang, Characterization of presynaptic septin complexes in mammalian hippocampal neurons, Biol. Chem, vol.392, pp.739-749, 2011.

J. Saifetiarova, A. M. Taylor, and M. A. Bhat, Early and late loss of the cytoskeletal scaffolding protein, ankyrin G reveals its role in maturation and maintenance of nodes of ranvier in myelinated axons, J. Neurosci, vol.37, pp.2524-2538, 2017.

T. Yoshimura, GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity, Cell, vol.120, pp.137-149, 2005.

J. C. Garza, Disruption of the psychiatric risk gene Ankyrin 3 enhances microtubule dynamics through GSK3/CRMP2 signaling, Transl. Psychiatry, vol.8, p.135, 2018.

T. Kimura, H. Watanabe, A. Iwamatsu, and K. Kaibuchi, Tubulin and CRMP-2 complex is transported via kinesin-1, J. Neurochem, vol.93, pp.1371-1382, 2005.

D. J. Palmer and P. Ng, Methods for the production of first generation adenoviral vectors, Methods Mol. Biol, vol.433, pp.55-78, 2008.

F. L. Graham, J. Smiley, W. C. Russell, and R. Nairn, Characteristics of a human cell line transformed by DNA from human adenovirus type 5, J. Gen. Virol, vol.36, pp.59-74, 1977.

F. L. Graham, Growth of 293 cells in suspension culture, J. Gen. Virol, vol.68, pp.937-940, 1987.

S. Guan, J. C. Price, S. B. Prusiner, S. Ghaemmaghami, and A. L. Burlingame, A data processing pipeline for mammalian proteome dynamics studies using stable isotope metabolic labeling, Mol. Cell. Proteom.: MCP, vol.10, p.111, 2011.

K. R. Clauser, P. Baker, and A. L. Burlingame, Role of accurate mass measurement (+/? 10 ppm) in protein identification strategies employing MS or MS/MS and database searching, Anal. Chem, vol.71, pp.2871-2882, 1999.