J. Achard, D. A. Drew, and R. T. Lahey, The analysis of nonlinear density-wave oscillations in boiling channels, J. Fluid Mech, vol.155, pp.213-232, 1985.

E. L. Allgower and K. Georg, Continuation an path following, Acta Numer, vol.2, pp.1-64, 1993.

N. Alpy, P. Marsault, M. Anderhuber, A. Gerschenfeld, P. Sciora et al., Phenomenological investigation of sodium boiling in a SFR core during a postulated ULOF transient with CATHARE 2 system code: a stabilized boiling case, J. Nucl. Sci. Technol, vol.53, pp.692-697, 2016.

J. A. Bouré, A. E. Bergles, and L. S. Tong, Review of two-phase flow instability, Nucl. Eng. Des, vol.25, pp.162-192, 1973.

I. Charpentier, B. Cochelin, and K. Lampoh, Diamanlab -an interactive Taylor-based continuation tool in Matlab
URL : https://hal.archives-ouvertes.fr/hal-00853599

I. Charpentier and B. Cochelin, Towards a full higher order AD-based continuation and bifurcation framework friction, Optim. Methods Softw, pp.1-18, 2018.

S. W. Churchill, Friction factor equation spans all fluid-flow regimes, Chem. Eng, vol.84, pp.91-92, 1977.

K. A. Cliffe, T. J. Garratt, and A. Spence, Eigenvalues of the discretized Navier-Stokes equation with application to the detection of Hopf bifurcations, Adv. Comput. Math, vol.1, pp.337-356, 1993.

K. A. Cliffe, T. J. Garratt, and A. Spence, Eigenvalues of block matrices arising from problems in fluid mechanics, SIAM J. Matrix Anal. Appl, vol.15, pp.1310-1318, 1994.

K. A. Cliffe, A. Spence, and S. J. Tavener, The numerical analysis of bifurcation problems with application to fluid mechanics, Acta Numer, vol.9, pp.39-131, 2000.

B. Cochelin, A path following technique via an asymptotic numerical method, Comput. Struct, vol.53, pp.1181-1192, 1994.

B. Cochelin, N. Damil, and M. Potier-ferry, Méthode Asymptotique Numérique, 2007.

B. Cochelin and M. Medale, Power series analysis as a major breakthrough to improve the efficiency of asymptotic numerical method in the vicinity of bifurcations, J. Comput. Phys, vol.236, pp.594-607, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00707513

H. A. Dijkstra, F. W. Wubs, A. K. Cliffe, E. Doedel, I. F. Dragomirescu et al., Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation, Commun. Comput. Phys, vol.15, pp.1-45, 2014.

E. Doedel, H. B. Keller, and J. P. Kernevez, Numerical analysis and control of bifurcation problems (i) bifurcation in finite dimensions, Int. J. Bifurc. Chaos, vol.3, pp.493-520, 1991.

E. Doedel, Nonlinear numerics, J. Franklin Inst, vol.334, pp.1049-1073, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01634308

E. Doedel, Lecture notes on numerical analysis of nonlinear equations, Numerical Continuation Methods for Dynamical Systems, pp.1-49, 2007.

A. Dokhane, D. Hennig, R. Chawla, and . Rizwan-uddin, Semi-analytical bifurcation analysis of two-phase flow in a heated channel, Int. J. Bifurc. Chaos, vol.15, issue.8, pp.2395-2409, 2005.

P. G. Draizin and W. H. Reid, Hydrodynamic Stability, 1981.

D. R. Fokkema, G. L. Sleijpen, H. A. Van-der, and . Vorst, Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput, vol.20, issue.1, pp.94-125, 1998.

K. Fukuda and T. Kobori, Classification of two-phase flow instability by density wave oscillation model, J. Nucl. Sci. Technol, vol.16, issue.2, pp.95-108, 1979.

A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Frontiers in Applied Mathematics, 2000.

F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids, vol.8, pp.2182-2189, 1965.

T. Hibiki and M. Ishii, One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes, Int. J. Heat Mass Transf, vol.46, issue.25, pp.4935-4948, 2003.

T. Hibiki, M. Ishii, and E. To, One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes, Int. J. Heat Mass Transf, vol.46, issue.6, pp.1222-1223, 2003.

, Passive Safety Systems and Natural Circulation in Water Cooled Nuclear Power Plants, vol.1624, 2009.

G. Iooss and D. D. Joseph, Elementary Stability and Bifurcation Theory, 1981.

M. Ishii, One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes, 1977.

H. B. Keller, Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, 1977.

R. T. Lahey and G. Yadigaroglu, A Lagrangian analysis of two-phase hydrodynamic and nuclear-coupled density-wave oscillations, Proceedings of the Fifth Int. Heat Transfer Conf, vol.5, 1974.

C. Lange, D. Hennig, and A. Hurtado, An advanced reduced order model for BWR stability analysis, Prog. Nucl. Energy, vol.53, pp.139-160, 2011.

P. Manneville, Structures dissipatives, chaos et turbulence, 1991.

C. Matlab®, , 1984.

M. Medale and B. Cochelin, High performance computations of steady-state bifurcations in 3D incompressible fluid flows by asymptotic numerical method, J. Comput. Phys, vol.299, pp.581-596, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01293671

K. Meerbergen and A. Spence, Implicitly restarted Arnoldi with purification for Shift-Invert transformation, Math. Comput, vol.66, pp.667-689, 1997.

C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal, vol.10, pp.241-256, 1973.

H. Muller-steinhagen and K. Heck, A simple friction pressure drop correlation for two-phase flow in pipes, Chem. Eng. Prog, vol.20, pp.297-308, 1986.

X. Nicolas, M. Medale, S. Glockner, and S. Gounand, Benchmark solution for a three-dimensional mixed-convection flow, Part: reference solutions, Numer. Heat Transf., Part B, Fundam, vol.60, pp.325-345, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00692092

W. L. Oberkampf and T. Trucano, Verification, and validation in computational fluid dynamics, Prog. Aerosp. Sci, vol.38, pp.209-272, 2002.

V. Pandey and S. Singh, Bifurcation analysis of density wave oscillations in natural circulation loop, Int. J. Therm. Sci, vol.120, pp.446-458, 2017.

B. Parisse and R. De-graeve, Giac/Xcas, version 1.5.0, 2018.

J. J. Rizwan-uddin and . Dorning, Some nonlinear dynamics of a heated channel, Nucl. Eng. Des, vol.93, issue.1, pp.1-14, 1986.

P. J. Roache-perspective, A method for uniform reporting of grid refinement studies, J. Fluids Eng, vol.116, pp.405-413, 1994.

C. J. Roy, Review of code and solution verification procedures for computational simulation, J. Comput. Phys, vol.205, pp.131-156, 2005.

J. Rommes, Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems Ax = ?Bx with singular B, Math. Comput, vol.77, issue.262, pp.995-1015, 2008.

L. C. Ruspini, C. P. Marcel, and A. Clausse, Two-phase flow instabilities: a review, Int. J. Heat Mass Transf, vol.71, pp.521-548, 2014.

P. Saha and N. Zuber, An analytical study of the thermally induced two-phase flow instabilities including the effect of thermal non-equilibrium, Int. J. Heat Mass Transf, vol.21, issue.4, pp.415-426, 1978.

R. Seydel, Practical Bifurcation and Stability Analysis, 1994.

R. Seydel, Nonlinear computation, J. Franklin Inst, vol.334, pp.1015-1047, 1997.

H. G. Sonnenburg, Full-range drift-flux model based on the combination of drift-flux theory with envelope theory, Int. NURETH-4 Conf, pp.1003-1009, 1989.

L. Sun and K. Mishima, Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels, Int. J. Multiph. Flow, vol.35, pp.47-54, 2009.

M. Van-dyke, Analysis and improvement of perturbation series, J. Mech. Appl. Math, vol.27, pp.423-450, 1974.

D. S. Watkins, Performance of the QZ algorithm in the presence of infinite eigenvalues, SIAM J. Matrix Anal. Appl, vol.22, pp.364-375, 2000.

G. B. Wallis and J. H. Heasley, Oscillations in two-phase flow systems, Trans. ASME J. Heat Transf, vol.83, pp.363-369, 1961.

A. Xu and C. Wang, Some extensions of Faà di Bruno's formula with divided differences, Comput. Math. Appl, vol.59, issue.6, pp.2047-2052, 2010.

Y. Xu, X. Fang, X. Su, Z. Zhou, and W. Chen, Evaluation of frictional pressure drop correlations for two-phase flow in pipes, Nucl. Eng. Des, vol.253, pp.86-97, 2012.

P. Yi, S. Yang, C. Habchi, and R. Lugo, A multicomponent real-fluid fully compressible four-equation model for two-phase flow with phase-change, Phys. Fluids, vol.31, p.26102, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02061996

N. Zuber and J. Findlay, Average volumetric concentration in two-phase flow system, J. Heat Transf, vol.87, pp.453-468, 1965.