D. A. Abrams, Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns, Cereb. Cortex, vol.21, pp.1507-1518, 2011.

J. A. Alexander, P. C. Wong, and A. R. Bradlow, Lexical tone perception in musicians and non-musicians, Paper presented at 9th European Conference on Speech Communication and Technology, pp.397-400, 2005.

S. S. Asaridou and J. M. Mcqueen, Speech and music shape the listening brain: evidence for shared domain-general mechanisms, Front. Psychol, vol.4, p.321, 2013.

K. C. Barrett, R. Ashley, D. L. Strait, and N. Kraus, Art and science: how musical training shapes the brain, Front. Psychol, vol.4, p.713, 2013.

L. Batterink and H. Neville, Implicit and explicit mechanisms of word learning in a narrative context: an event-related potential study, J. Cogn. Neurosci, vol.23, pp.3181-3196, 2011.

P. Belin, R. J. Zatorre, P. Lafaille, P. Ahad, and B. Pike, Voice-selective areas in human auditory cortex, Nature, vol.403, pp.309-312, 2000.

S. Bergman-nutley, F. Darki, and T. Klingberg, Music practice is associated with development of working memory during childhood and adolescence, Front. Hum. Neurosci, vol.7, p.926, 2014.

R. C. Berwick, A. D. Friederici, N. Chomsky, and J. J. Bolhuis, Evolution, brain, and the nature of language, Trends Cogn. Sci, vol.17, pp.89-98, 2013.

M. Besson, J. Chobert, and C. Marie, Transfer of training between music and speech: common processing, attention, and memory, Front. Psychol, vol.2, p.94, 2011.

G. M. Bidelman and C. Alain, Musical training orchestrates coordinated neuroplasticity in auditory brainstem and cortex to counteract age-related declines in categorical vowel per-ception, J. Neurosci, vol.35, pp.1240-1249, 2015.

G. M. Bidelman and A. Krishnan, Effects of reverberation on brainstem representation of speech in musicians and non-musicians, Brain Res, vol.1355, pp.112-125, 2010.

G. M. Bidelman, J. T. Gandour, and A. Krishnan, Musicians and tone-language speakers share enhanced brainstem encoding but not perceptual benefits for musical pitch, Brain Cogn, vol.77, pp.1-10, 2011.

G. M. Bidelman, S. Moreno, and C. Alain, Tracing the emergence of categorical speech perception in the human auditory system, NeuroImage, vol.79, pp.201-212, 2013.

G. M. Bidelman, M. W. Weiss, S. Moreno, and C. Alain, Coordinated plasticity in brain-stem and auditory cortex contributes to enhanced categorical speech perception in musi-cians, Eur. J. Neurosci, vol.40, pp.2662-2673, 2014.

J. E. Boland, A history of psycholinguistics: the pre-Chomskyan era, Historiographia Linguistica, vol.41, issue.1, pp.168-175, 2014.

I. Bornkessel-schlesewsky and M. Schlesewsky, Reconciling time, space and function: a new dorsal-ventral stream model of sentence comprehension, Brain Lang, vol.125, pp.60-76, 2013.

A. Borovsky, J. L. Elman, and M. Kutas, Once is enough: N400 indexes semantic integration of novel word meanings from a single exposure in context, Lang. Learn. Dev, vol.8, pp.278-302, 2012.

A. Borovsky, M. Kutas, and J. Elman, Learning to use words: event-related potentials index single-shot contextual word learning, Cognition, vol.116, pp.289-296, 2010.

S. Brandler and T. H. Rammsayer, Differences in mental abilities between musicians and non-musicians, Psychol. Music, vol.31, pp.123-138, 2003.

J. Brauer, A. Anwander, D. Perani, and A. D. Friederici, Dorsal and ventral pathways in language development, Brain Lang, vol.127, pp.289-295, 2013.

N. Cason and D. Schön, Rhythmic priming enhances the phonological processing of speech, Neuropsychologia, vol.50, pp.2652-2658, 2012.

M. Catani and D. H. Ffytche, The rises and falls of disconnection syndromes, Brain J. Neurol, vol.128, pp.2224-2239, 2005.

A. S. Chan, Y. C. Ho, and M. C. Cheung, Music training improves verbal memory, Nature, vol.396, p.128, 1998.

J. Chartrand and P. Belin, Superior voice timbre processing in musicians, Neurosci. Lett, vol.405, pp.164-167, 2006.

J. L. Chen, V. B. Penhune, and R. J. Zatorre, Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training, J. Cogn. Neurosci, vol.20, pp.226-239, 2008.

J. Chobert, C. Francois, J. Velay, and M. Besson, Twelve months of active musical training in 8-to 10-year-old children enhances the preattentive processing of syllabic dur-ation and voice onset time, Cereb. Cortex, vol.24, pp.956-967, 2014.

A. Cooper and Y. Wang, Effects of tone training on Cantonese tone-word learning, J. Acoust. Soc. Am, vol.134, pp.133-139, 2013.

A. Cooper and Y. Wang, The influence of linguistic and musical experience on Cantonese word learning, J. Acoust. Soc. Am, vol.131, pp.4756-4769, 2012.

G. Dehaene-lambertz and E. S. Spelke, The infancy of the human brain, Neuron, vol.88, pp.93-109, 2015.

A. Diamond, Executive functions, Annu. Rev. Psychol, vol.64, pp.135-168, 2013.

E. Dittinger, Professional music training and novel word learning: from faster semantic encoding to longer-lasting word representations, J. Cogn. Neurosci, vol.28, issue.10, pp.1584-1602, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01626864

E. Dittinger, S. A. Valizadeh, L. Jäncke, M. Besson, and S. Elmer, Increased functional connectivity in the ventral and dorsal streams during retrieval of novel words in professional musicians, Hum. Brain Mapp, vol.39, pp.722-734, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01629294

E. Dittinger, M. D'império, and M. Besson, Enhanced neural and behavioral processing of a non-native phonemic contrast in professional musicians, Eur. J. Neurosci. 1-13, 2018.

T. Elbert, C. Pantev, C. Wienbruch, B. Rockstroh, and E. Taub, Increased cortical representation of the fingers of the left hand in string players, Science, vol.270, pp.305-307, 1995.

S. Elmer, M. Meyer, and L. Jancke, Neurofunctional and behavioral correlates of phon-etic and temporal categorization in musically trained and untrained subjects, Cereb. Cortex, vol.22, pp.650-658, 2012.

M. M. Farbood, D. J. Heeger, G. Marcus, U. Hasson, and Y. Lerner, The neural pro-cessing of hierarchical structure in music and speech at different timescales, Front. Neurosci, vol.9, 2010.

W. T. Fitch and D. Reby, The descended larynx is not uniquely human, Proc. R. Soc. B Biol. Sci, vol.268, pp.1669-1675, 2001.

A. B. Fitzroy and L. D. Sanders, Musical expertise modulates early processing of syntactic violations in language, Front. Psychol, vol.3, p.603, 2012.

C. Francois, J. Chobert, M. Besson, and D. Schon, Music training for the development of speech segmentation, Cereb. Cortex, vol.23, pp.2038-2043, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01384105

C. Francois and D. Schön, Musical expertise boosts implicit learning of both musical and linguistic structures, Cereb. Cortex, vol.21, pp.2357-2365, 2011.

M. S. Franklin, The effects of musical training on verbal memory, Psychol. Music, vol.36, pp.353-365, 2008.

A. D. Friederici, Pathways to language: fiber tracts in the human brain, Trends Cogn. Sci, vol.13, pp.175-181, 2009.

A. D. Friederici, The brain basis of language processing: from structure to function, Physiol. Rev, vol.91, pp.1357-1392, 2011.

A. D. Friederici, The cortical language circuit: from auditory perception to sentence comprehension, Trends Cogn. Sci, vol.16, pp.262-268, 2012.

A. D. Friederici, J. Bahlmann, S. Heim, R. I. Schubotz, and A. Anwander, The brain dif-ferentiates human and non-human grammars: functional localization and structural con-nectivity, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.2458-2463, 2006.

A. D. Friederici and W. Singer, Grounding language processing on basic neurophysio-logical principles, Trends Cogn. Sci, vol.19, pp.329-338, 2015.

K. J. Friston, C. D. Frith, P. Fletcher, P. F. Liddle, and R. S. Frackowiak, Functional top-ography: multidimensional scaling and functional connectivity in the brain, Cereb. Cortex, vol.6, pp.156-164, 1996.

E. M. George and D. Coch, Music training and working memory: an ERP study, Neuropsychologia, vol.49, pp.1083-1094, 2011.

F. Geranmayeh, R. Leech, and R. J. Wise, Semantic retrieval during overt picture description: left anterior temporal or the parietal lobe?, Neuropsychologia, vol.76, pp.125-135, 2015.

A. Giraud and D. Poeppel, Cortical oscillations and speech processing: emerging computational principles and operations, Nat. Neurosci, vol.15, pp.511-517, 2012.

A. Giraud, Endogenous cortical rhythms determine cerebral specialization for speech perception and production, Neuron, vol.56, pp.1127-1134, 2007.

N. Gogtay, Dynamic mapping of human cortical development during childhood through early adulthood, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.8174-8179, 2004.

N. Golestani and C. Pallier, Anatomical correlates of foreign speech sound production, Cereb. Cortex, vol.17, pp.929-934, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02327567

N. Golestani and R. J. Zatorre, Learning new sounds of speech: reallocation of neural substrates, NeuroImage, vol.21, pp.494-506, 2004.

P. Hagoort, Nodes and networks in the neural architecture for language: Broca's region and beyond, Curr. Opin. Neurobiol, vol.28, pp.136-141, 2014.

G. F. Halwani, P. Loui, T. Rüber, and G. Schlaug, Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and nonmusicians, Front. Psychol, vol.2, p.156, 2011.

J. Harasty, H. L. Seldon, P. Chan, G. Halliday, and A. Harding, The left human speech-processing cortex is thinner but longer than the right, Laterality, vol.8, pp.247-260, 2003.

M. D. Hauser, The faculty of language: what is it, who has it, and how did it evolve?, Science, vol.298, pp.1569-1579, 2002.

G. Hickok and D. Poeppel, The cortical organization of speech processing, Nat. Rev. Neurosci, vol.8, pp.393-402, 2007.

L. S. Jakobson, S. T. Lewycky, A. R. Kilgour, and B. M. Stoesz, Memory for verbal and visual material in highly trained musicians, Music Percept. Interdiscip. J, vol.26, pp.41-55, 2008.

L. Jäncke, The relationship between music and language, Front. Psychol, vol.3, p.123, 2012.

M. Janus, Y. Lee, S. Moreno, and E. Bialystok, Effects of short-term music and secondlanguage training on executive control, J. Exp. Child Psychol, vol.144, pp.84-97, 2016.

S. Jentschke and S. Koelsch, Musical training modulates the development of syntax pro-cessing in children, NeuroImage, vol.47, pp.735-744, 2009.

C. Klein, F. Liem, J. Hänggi, S. Elmer, and L. Jäncke, The 'silent' imprint of musical training, Hum. Brain Mapp, vol.37, pp.536-546, 2016.

S. Koelsch, Bach speaks: a cortical 'language-network' serves the processing of music, NeuroImage, vol.17, pp.956-966, 2002.

N. Kraus and B. Chandrasekaran, Music training for the development of auditory skills, Nat. Rev. Neurosci, vol.11, pp.599-605, 2010.

P. K. Kuhl, Early language acquisition: cracking the speech code, Nat. Rev. Neurosci, vol.5, pp.831-843, 2004.

P. K. Kuhl, Is speech learning 'gated' by the social brain?, Dev. Sci, vol.10, pp.110-120, 2007.

M. Kutas and K. D. Federmeier, Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP), Annu. Rev. Psychol, vol.62, pp.621-647, 2011.

A. Lahav, E. Saltzman, and G. Schlaug, Action representation of sound: audiomotor recognition network while listening to newly acquired actions, J. Neurosci, vol.27, pp.308-314, 2007.

C. Lee and T. Hung, Identification of Mandarin tones by English-speaking musi-cians and nonmusicians, J. Acoust. Soc. Am, vol.124, pp.3235-3248, 2008.

H. Lee and U. Noppeney, Long -term music training tunes how the brain temporally binds signals from multiple senses, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.1441-1450, 2011.

D. Lehmann, P. L. Faber, L. R. Gianotti, K. Kochi, and R. D. Marqui, Coherence and phase locking in the scalp EEG and between LORETA model sources, and microstates as putative mechanisms of brain temporo-spatial functional organization, J. Physiol. Paris, vol.99, pp.29-36, 2006.

D. J. Levitin and V. Menon, Musical structure is processed in 'language' areas of the brain: a possible role for Brodmann Area 47 in temporal coherence, NeuroImage, vol.20, pp.2142-2152, 2003.

C. F. Lima and S. L. Castro, Speaking to the trained ear: musical expertise enhances the recognition of emotions in speech prosody, Emot. Wash. DC, vol.11, pp.1021-1031, 2011.

D. López-barroso, Word learning is mediated by the left arcuate fasciculus, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.13168-13173, 2013.

W. Ma and W. F. Thompson, Human emotions track changes in the acoustic environ-ment, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.14563-14568, 2015.

B. Maess, S. Koelsch, T. C. Gunter, and A. D. Friederici, Musical syntax is processed in Broca's area: an MEG study, Nat. Neurosci, vol.4, pp.540-545, 2001.

C. Magne, D. Schön, and M. Besson, Musician children detect pitch violations in both music and language better than nonmusician children: behavioral and electrophysiological approaches, J. Cogn. Neurosci, vol.18, pp.199-211, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01637305

C. Marques, S. Moreno, S. L. Castro, and M. Besson, Musicians detect pitch violation in a foreign language better than nonmusicians: behavioral and electrophysiological evidence, J. Cogn. Neurosci, vol.19, pp.1453-1463, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01637304

B. Mathias, C. Palmer, F. Perrin, and B. Tillmann, Sensorimotor learning enhances expectations during auditory perception, Cereb. Cortex, vol.25, pp.2238-2254, 2015.

J. Mclaughlin, L. Osterhout, and A. Kim, Neural correlates of second-language word learning: minimal instruction produces rapid change, Nat. Neurosci, vol.7, pp.703-704, 2004.

A. Mestres-misse, A. Rodriguez-fornells, and T. F. Munte, Watching the brain during meaning acquisition, Cereb. Cortex, vol.17, pp.1858-1866, 2007.

M. Meyer, S. Elmer, and L. Jäncke, Musical expertise induces neuroplasticity of the planum temporale, Ann. N.Y. Acad. Sci, vol.1252, pp.116-123, 2012.

A. D. Milner and M. A. Goodale, Two visual systems re-viewed, Neuropsychologia, vol.46, pp.774-785, 2008.

M. Mishkin and L. G. Ungerleider, Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys, Behav. Brain Res, vol.6, pp.57-77, 1982.

S. Moreno, Musical training influences linguistic abilities in 8-year-old chil-dren: more evidence for brain plasticity, Cereb. Cortex, vol.19, pp.712-723, 2009.

S. Moreno, Short-term music training enhances verbal intelligence and executive function, Psychol. Sci, vol.22, pp.1425-1433, 2011.

T. F. Münte, E. Altenmüller, and L. Jäncke, The musician's brain as a model of neuroplasticity, Nat. Rev. Neurosci, vol.3, pp.473-478, 2002.

G. Musacchia, M. Sams, E. Skoe, and N. Kraus, Musicians have enhanced subcortical auditory and audiovisual processing of speech and music, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.15894-15898, 2007.

S. Norman-haignere, N. G. Kanwisher, and J. H. Mcdermott, Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition, Neuron, vol.88, pp.1281-1296, 2015.

M. S. Oechslin, A. Imfeld, T. Loenneker, M. Meyer, and L. Jäncke, The plasticity of the superior longitudinal fasciculus as a function of musical expertise: a diffusion tensor imaging study, Front. Hum. Neurosci, vol.3, p.76, 2009.

C. Ott, Processing of voiced and unvoiced acoustic stimuli in musicians, Front. Psychol, vol.2, p.195, 2011.

T. Overath, J. H. Mcdermott, J. M. Zarate, and D. Poeppel, The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts, Nat. Neurosci, vol.18, pp.903-911, 2015.

K. J. Pallesen, Cognitive control in auditory working memory is enhanced in mu-sicians, PLoS ONE, vol.5, 2010.

C. Pantev, C. Lappe, S. C. Herholz, and L. Trainor, Auditory-somatosensory integration and cortical plasticity in musical training, Ann. N.Y. Acad. Sci, vol.1169, pp.143-150, 2009.

E. Paraskevopoulos, A. Kraneburg, S. C. Herholz, P. D. Bamidis, and C. Pantev, Musical expertise is related to altered functional connectivity during audiovisual integration, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.12522-12527, 2015.

E. Paraskevopoulos, A. Kuchenbuch, S. C. Herholz, and C. Pantev, Musical expertise induces audiovisual integration of abstract congruency rules, J. Neurosci, vol.32, pp.18196-18203, 2012.

E. Paraskevopoulos, A. Kuchenbuch, S. C. Herholz, and C. Pantev, Multisensory in-tegration during short-term music reading training enhances both uni-and multisensory cortical processing, J. Cogn. Neurosci, vol.26, pp.2224-2238, 2014.

D. Perani, Neural language networks at birth, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.16056-16061, 2011.

C. A. Perfetti, E. W. Wlotko, and L. A. Hart, Word learning and individual differences in word learning reflected in event-related potentials, J. Exp. Psychol. Learn. Mem. Cogn, vol.31, pp.1281-1292, 2005.

J. Péron, S. Frühholz, L. Ceravolo, and D. Grandjean, Structural and functional con-nectivity of the subthalamic nucleus during vocal emotion decoding, Soc. Cogn. Affect. Neurosci, vol.11, pp.349-356, 2016.

J. P. Rauschecker and S. K. Scott, Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing, Nat. Neurosci, vol.12, pp.718-724, 2009.

P. Ripollés, The role of reward in word learning and its implications for language acquisition, Curr. Biol. CB, vol.24, pp.2606-2611, 2014.

I. Roden, G. Kreutz, and S. Bongard, Effects of a school-based instrumental music program on verbal and visual memory in primary school children: a longitudinal study, Front. Psychol, vol.3, p.572, 2012.

A. Rodríguez-fornells, T. Cunillera, A. Mestres-missé, and R. De-diego-balaguer, , 2009.

, Neurophysiological mechanisms involved in language learning in adults, Philos. Trans. R. Soc. B Biol. Sci, vol.364, pp.3711-3735

C. Rogalsky, F. Rong, K. Saberi, and G. Hickok, Functional anatomy of language and music perception: temporal and structural factors investigated using functional magnetic resonance imaging, J. Neurosci, vol.31, pp.3843-3852, 2011.

M. P. Roncaglia-denissen, M. Schmidt-kassow, and S. A. Kotz, Speech rhythm facili-tates syntactic ambiguity resolution: ERP evidence, PloS One, vol.8, p.56000, 2013.

J. R. Saffran, Statistical language learning mechanisms and constraints, Curr. Dir. Psychol. Sci, vol.12, pp.110-114, 2003.

R. Santoro, Encoding of natural sounds at multiple spectral and temporal resolu-tions in the human auditory cortex, PLoS Comput. Biol, vol.10, p.1003412, 2014.

E. G. Schellenberg, Music lessons enhance IQ, Psychol. Sci, vol.15, pp.511-514, 2004.

G. Schlaug, L. Jancke, Y. Huang, and H. Steinmetz, In vivo evidence of structural brain asymmetry in musicians, Science, vol.267, pp.699-701, 1995.

M. Schmidt-kassow and S. A. Kotz, Event-related brain potentials suggest a late inter-action of meter and syntax in the P600, J. Cogn. Neurosci, vol.21, pp.1693-1708, 2009.

P. Schneider, Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians, Nat. Neurosci, vol.5, pp.688-694, 2002.

D. Schön, C. Magne, and M. Besson, The music of speech: music training facilitates pitch processing in both music and language, Psychophysiology, vol.41, pp.341-349, 2004.

K. Schulze, W. J. Dowling, and B. Tillmann, Working memory for tonal and atonal sequences during a forward and a backward recognition task, Music Percept. Interdiscip. J, vol.29, pp.255-267, 2012.

K. Schulze and S. Koelsch, Working memory for speech and music, Ann. N.Y. Acad. Sci, vol.1252, pp.229-236, 2012.

K. Schulze, K. Mueller, and S. Koelsch, Neural correlates of strategy use during auditory working memory in musicians and non-musicians, Eur. J. Neurosci, vol.33, pp.189-196, 2011.

K. Schulze, S. Zysset, K. Mueller, A. D. Friederici, and S. Koelsch, Neuroarchitecture of verbal and tonal working memory in nonmusicians and musicians, Hum. Brain Mapp, vol.32, pp.771-783, 2011.

H. L. Seldon, Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions, Brain Res, vol.229, pp.277-294, 1981.

V. Sluming, Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians, NeuroImage, vol.17, pp.1613-1622, 2002.

R. W. Thatcher, Coherence, phase differences, phase shift, and phase lock in EEG/ERP analyses, Dev. Neuropsychol, vol.37, pp.476-496, 2012.

W. F. Thompson, M. M. Marin, and L. Stewart, Reduced sensitivity to emotional prosody in congenital amusia rekindles the musical protolanguage hypothesis, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.19027-19032, 2012.

W. F. Thompson, E. G. Schellenberg, and G. Husain, Decoding speech prosody: do music lessons help?, Emot. Wash. DC, vol.4, pp.46-64, 2004.

B. Tillmann, P. Janata, and J. J. Bharucha, Activation of the inferior frontal cortex in mu-sical priming, Ann. N.Y. Acad. Sci, vol.999, pp.209-211, 2003.

C. G. Trimmer and L. L. Cuddy, Emotional intelligence, not music training, predicts rec-ognition of emotional speech prosody, Emot. Wash. DC, vol.8, pp.838-849, 2008.

P. Vuust, A. Roepstorff, M. Wallentin, K. Mouridsen, and L. Østergaard, Keeping the rhythm during polyrhythmic tension activates language areas (BA47), NeuroImage, vol.31, pp.832-841, 2006.

L. M. Ward, Synchronous neural oscillations and cognitive processes, Trends Cogn. Sci, vol.7, pp.553-559, 2003.

V. J. Williamson, A. D. Baddeley, and G. J. Hitch, Musicians' and nonmusicians' short-term memory for verbal and musical sequences: comparing phonological similarity and pitch proximity, Mem. Cogn, vol.38, pp.163-175, 2010.

P. C. Wong and T. K. Perrachione, Learning pitch patterns in lexical identification by native English-speaking adults, Appl. Psycholinguist, vol.28, issue.4, pp.565-585, 2007.

P. C. Wong, E. Skoe, N. M. Russo, T. Dees, and N. Kraus, Musical experience shapes human brainstem encoding of linguistic pitch patterns, Nat. Neurosci, vol.10, pp.420-422, 2007.

R. J. Zatorre and P. Belin, Spectral and temporal processing in human auditory cortex, Cereb. Cortex, vol.11, pp.946-953, 2001.

J. Zuk, C. Benjamin, A. Kenyon, and N. Gaab, Behavioral and neural correlates of executive functioning in musicians and non-musicians, PLOS ONE, vol.9, 2014.

, German consonant-vowel syllables and two reduced-spectrum analogues; see Audio 10.1) were used in three previous publications in order to assess putative advantages of musicians in processing fast-changing phonetic cues. These stimuli consisted of the German CV syllables /ka/(voiceless initial consonant) and /da/ (voiced initial consonant) as well as of its reduced-spectrum analogues. The duration of the syllables was about 350 ms, and the voice-onset time (VOT) of /da/and /ka/was approximately 13 ms and 53 ms, respectively. For the reduced-spectrum analogues, spectral information was removed from the CV syllables by replacing the frequency-specific information in a broad frequency region with band, Auditory Stimuli The four consonant-vowel (CV) syllables (two natural, vol.2, pp.2500-3500

. Hz, Amplitude and temporal cues were preserved in each spectral band, resulting in double-band-pass filtered noise with temporal CV-amplitude dynamics

S. Elmer, M. Meyer, and L. Jäncke, Neurofunctional and behavioral correlates of phon-etic and temporal categorization in musically trained and untrained subjects, Cerebral Cortex, vol.22, pp.650-658, 2012.

S. Elmer, J. Hänggi, M. Meyer, and L. Jäncke, Increased cortical surface area of the left planum temporale in musicians facilitates the categorization of phonetic and temporal speech sounds, Cortex, vol.49, pp.2812-2821, 2013.

S. Elmer, J. Hänggi, and L. Jäncke, Interhemispheric transcallosal connectivity between the left and right planum temporale predicts musicianship, performance in temporal speech processing, and functional specialization, Brain Structure and Function, vol.221, pp.331-344, 2016.