R. Abu-issa, G. Smyth, I. Smoak, K. Yamamura, and E. N. Meyers, Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse, Development, vol.129, pp.4613-4625, 2002.

V. S. Aggarwal, J. Liao, A. Bondarev, T. Schimmang, M. Lewandoski et al., Dissection of Tbx1 and Fgf interactions in mouse models of 22q11DS suggests functional redundancy, Human molecular genetics, vol.15, pp.3219-3228, 2006.

P. Andersen, E. Tampakakis, D. V. Jimenez, S. Kannan, M. Miyamoto et al., Precardiac organoids form two heart fields via Bmp/Wnt signaling, Nature communications, vol.9, p.3140, 2018.

K. Asahina, S. Y. Tsai, P. Li, M. Ishii, R. E. Maxson et al., Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development, Hepatology, vol.49, pp.998-1011, 2009.

G. Auda-boucher, B. Bernard, J. Fontaine-perus, T. Rouaud, M. Mericksay et al., Staging of the commitment of murine cardiac cell progenitors, Developmental biology, vol.225, pp.214-225, 2000.

N. Azpiazu and M. Frasch, tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila, Genes & development, vol.7, pp.1325-1340, 1993.

X. Bao, X. Lian, T. A. Hacker, E. G. Schmuck, T. Qian et al., Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions, Nature biomedical engineering, vol.1, 2016.

E. Bardot, D. Calderon, F. Santoriello, S. Han, K. Cheung et al., Foxa2 identifies a cardiac progenitor population with ventricular differentiation potential, Nature communications, vol.8, p.14428, 2017.

R. M. Barnes, B. A. Firulli, S. J. Conway, J. W. Vincentz, and A. B. Firulli, Analysis of the Hand1 cell lineage reveals novel contributions to cardiovascular, neural crest, extra-embryonic, and lateral mesoderm derivatives. Developmental dynamics : an official publication of the, American Association of Anatomists, vol.239, pp.3086-3097, 2010.

J. Beh, W. Shi, M. Levine, B. Davidson, and L. Christiaen, FoxF is essential for FGF-induced migration of heart progenitor cells in the ascidian Ciona intestinalis, Development, vol.134, pp.3297-3305, 2007.

N. Bertrand, M. Roux, L. Ryckebusch, K. Niederreither, P. Dolle et al., Hox genes define distinct progenitor sub-domains within the second heart field, Developmental biology, vol.353, pp.266-274, 2011.

R. Bodmer, The gene tinman is required for specification of the heart and visceral muscles in Drosophila, Development, vol.118, pp.719-729, 1993.

A. Bondue and C. Blanpain, Mesp1: a key regulator of cardiovascular lineage commitment, Circulation research, vol.107, pp.1414-1427, 2010.

A. Bondue, G. Lapouge, C. Paulissen, C. Semeraro, M. Iacovino et al., Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification, Cell stem cell, vol.3, pp.69-84, 2008.

A. Bondue, S. Tannler, G. Chiapparo, S. Chabab, M. Ramialison et al., Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation, The Journal of cell biology, vol.192, pp.751-765, 2011.

C. B. Brown, J. M. Wenning, M. M. Lu, D. J. Epstein, E. N. Meyers et al., Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse, Developmental biology, vol.267, pp.190-202, 2004.

M. Buckingham, S. Meilhac, and S. Zaffran, Building the mammalian heart from two sources of myocardial cells, Nature reviews Genetics, vol.6, pp.826-835, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00118537

S. Chabab, F. Lescroart, S. Rulands, N. Mathiah, B. D. Simons et al., Uncovering the Number and Clonal Dynamics of Mesp1 Progenitors during Heart Morphogenesis, Cell reports, vol.14, pp.1-10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02441138

S. S. Chan, H. Chan, and M. Kyba, Heterogeneity of Mesp1+ mesoderm revealed by single-cell RNA-seq, Biochemical and biophysical research communications, vol.474, pp.469-475, 2016.

S. S. Chan, X. Shi, A. Toyama, R. W. Arpke, A. Dandapat et al., Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner, Cell stem cell, vol.12, pp.587-601, 2013.

C. P. Chang and B. G. Bruneau, Epigenetics and cardiovascular development, Annu Rev Physiol, vol.74, pp.41-68, 2012.

G. Chiapparo, X. Lin, F. Lescroart, S. Chabab, C. Paulissen et al., Mesp1 controls the speed, polarity, and directionality of cardiovascular progenitor migration, The Journal of cell biology, vol.213, pp.463-477, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02441106

C. Choquet, L. Marcadet, S. Beyer, R. G. Kelly, and L. Miquerol, Segregation of Central Ventricular Conduction System Lineages in Early SMA+ Cardiomyocytes Occurs Prior to Heart Tube Formation, Journal of cardiovascular development, vol.3, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01692898

L. Christiaen, B. Davidson, T. Kawashima, W. Powell, H. Nolla et al., The transcription/migration interface in heart precursors of Ciona intestinalis, Science, vol.320, pp.1349-1352, 2008.

L. Christiaen, A. Stolfi, B. Davidson, and M. Levine, Spatio-temporal intersection of Lhx3 and Tbx6 defines the cardiac field through synergistic activation of Mesp, Developmental biology, vol.328, pp.552-560, 2009.

F. L. Conlon, K. M. Lyons, N. Takaesu, K. S. Barth, A. Kispert et al., A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse, Development, vol.120, pp.1919-1928, 1994.

I. Costello, I. M. Pimeisl, S. Drager, E. K. Bikoff, E. J. Robertson et al., The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation, Nature cell biology, vol.13, pp.1084-1091, 2011.

R. David, C. Brenner, J. Stieber, F. Schwarz, S. Brunner et al., MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling, Nature cell biology, vol.10, pp.338-345, 2008.

R. David, V. B. Jarsch, F. Schwarz, P. Nathan, M. Gegg et al., Induction of MesP1 by Brachyury(T) generates the common multipotent cardiovascular stem cell, Cardiovascular research, vol.92, pp.115-122, 2011.

B. Davidson, W. Shi, J. Beh, L. Christiaen, and M. Levine, FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis, Genes & development, vol.20, pp.2728-2738, 2006.

B. Davidson, W. Shi, and M. Levine, Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis, Development, vol.132, pp.4811-4818, 2005.

D. Bono, C. Thellier, C. Bertrand, N. Sturny, R. Jullian et al., T-box genes and retinoic acid signaling regulate the segregation of arterial and venous pole progenitor cells in the murine second heart field, Human molecular genetics, vol.27, pp.3747-3760, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01989903

E. De-pater, L. Clijsters, S. R. Marques, Y. F. Lin, Z. V. Garavito-aguilar et al., Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart, Development, vol.136, pp.1633-1641, 2009.

T. Y. De-soysa, S. S. Ranade, S. Okawa, S. Ravichandran, Y. Huang et al., Single-cell transcriptome analysis during cardiogenesis reveals basis for organ level developmental anomalies, 2018.

D. Hartogh, S. C. Schreurs, C. Monshouwer-kloots, J. J. Davis, R. P. Elliott et al., Dual reporter MESP1 mCherry/w-NKX2-5 eGFP/w hESCs enable studying early human cardiac differentiation, Stem Cells, vol.33, pp.56-67, 2015.

A. Desgrange, L. Garrec, J. F. Meilhac, and S. M. , Left-right asymmetry in heart development and disease: forming the right loop, Development, p.145, 2018.

A. R. Deshwar, J. C. Onderisin, A. Aleksandrova, X. Yuan, J. Burrows et al., Mespaa can potently induce cardiac fates in zebrafish, Developmental biology, vol.418, pp.17-27, 2016.

W. P. Devine, J. D. Wythe, M. George, K. Koshiba-takeuchi, and B. G. Bruneau, Early patterning and specification of cardiac progenitors in gastrulating mesoderm, vol.3, 2014.

R. Diogo, R. G. Kelly, L. Christiaen, M. Levine, J. M. Ziermann et al., A new heart for a new head in vertebrate cardiopharyngeal evolution, Nature, vol.520, pp.466-473, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01432404

T. E. Dohn, P. Ravisankar, F. T. Tirera, K. E. Martin, J. T. Gafranek et al., Nr2f-dependent allocation of ventricular cardiomyocyte and pharyngeal muscle progenitors, PLoS genetics, vol.15, p.1007962, 2019.

M. Drukker, C. Tang, R. Ardehali, Y. Rinkevich, J. Seita et al., Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells, Nature biotechnology, vol.30, pp.531-542, 2012.

M. Ema, S. Takahashi, and J. Rossant, Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors, Blood, vol.107, pp.111-117, 2006.

M. Frasch, Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo, Nature, vol.374, pp.464-467, 1995.

M. Fujii, A. Sakaguchi, R. Kamata, M. Nagao, Y. Kikuchi et al., Sfrp5 identifies murine cardiac progenitors for all myocardial structures except for the right ventricle, Nature communications, vol.8, p.14664, 2017.

P. Gadue, T. L. Huber, P. J. Paddison, and G. M. Keller, Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.16806-16811, 2006.

J. A. Guadix, V. V. Orlova, E. Giacomelli, M. Bellin, M. C. Ribeiro et al., Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells. Stem Cell Reports, vol.9, pp.1754-1764, 2017.

B. Guner-ataman, J. M. Gonzalez-rosa, H. N. Shah, V. L. Butty, S. Jeffrey et al., Failed Progenitor Specification Underlies the Cardiopharyngeal Phenotypes in a Zebrafish Model of 22q11.2 Deletion Syndrome, Cell reports, vol.24, pp.1342-1354, 1345.

X. Guo, Y. Xu, Z. Wang, Y. Wu, J. Chen et al., A Linc1405/Eomes Complex Promotes Cardiac Mesoderm Specification and Cardiogenesis, Cell stem cell, vol.22, pp.893-908, 2018.

H. Haegel, L. Larue, M. Ohsugi, L. Fedorov, K. Herrenknecht et al., Lack of beta-catenin affects mouse development at gastrulation, Development, vol.121, pp.3529-3537, 1995.

I. Harel, E. Nathan, L. Tirosh-finkel, H. Zigdon, N. Guimaraes-camboa et al., Distinct origins and genetic programs of head muscle satellite cells, Developmental cell, vol.16, pp.822-832, 2009.

R. P. Harvey, Patterning the vertebrate heart, Nature reviews Genetics, vol.3, pp.544-556, 2002.

A. He, S. W. Kong, Q. Ma, and W. T. Pu, Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.5632-5637, 2011.

H. Hirata, S. Kawamata, Y. Murakami, K. Inoue, A. Nagahashi et al., Coexpression of platelet-derived growth factor receptor alpha and fetal liver kinase 1 enhances cardiogenic potential in embryonic stem cell differentiation in vitro, J Biosci Bioeng, vol.103, pp.412-419, 2007.

T. Hochgreb, V. L. Linhares, D. C. Menezes, A. C. Sampaio, C. Y. Yan et al., A caudorostral wave of RALDH2 conveys anteroposterior information to the cardiac field, Development, vol.130, pp.5363-5374, 2003.

J. Hou, H. Long, C. Zhou, S. Zheng, H. Wu et al., Long noncoding RNA Braveheart promotes cardiogenic differentiation of mesenchymal stem cells in vitro, Stem Cell Res Ther, vol.8, p.4, 2017.

T. Hu, H. Yamagishi, J. Maeda, J. Mcanally, C. Yamagishi et al., Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors, Development, vol.131, pp.5491-5502, 2004.

S. Huang, J. Ma, X. Liu, Y. Zhang, and L. Luo, Retinoic acid signaling sequentially controls visceral and heart laterality in zebrafish, The Journal of biological chemistry, vol.286, pp.28533-28543, 2011.

M. Ieda, J. D. Fu, P. Delgado-olguin, V. Vedantham, Y. Hayashi et al., Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors, Cell, vol.142, pp.375-386, 2010.

R. Ilagan, R. Abu-issa, D. Brown, Y. P. Yang, K. Jiao et al., Fgf8 is required for anterior heart field development, Development, vol.133, pp.2435-2445, 2006.

I. Kokkinopoulos, H. Ishida, R. Saba, P. Ruchaya, C. Cabrera et al., Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo, PloS one, vol.10, p.140831, 2015.

V. Kouskoff, G. Lacaud, S. Schwantz, H. J. Fehling, and G. Keller, Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.13170-13175, 2005.

M. A. Laflamme, K. Y. Chen, A. V. Naumova, V. Muskheli, J. A. Fugate et al., Cardiomyocytes derived from human embryonic stem cells in prosurvival factors enhance function of infarcted rat hearts, Nature biotechnology, vol.25, pp.1015-1024, 2007.

K. A. Lawson, Fate mapping the mouse embryo, The International journal of developmental biology, vol.43, pp.773-775, 1999.

S. Lazic and I. C. Scott, Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish, Developmental biology, vol.354, pp.123-133, 2011.

J. H. Lee, S. I. Protze, Z. Laksman, P. H. Backx, and G. M. Keller, Human Pluripotent Stem Cell-Derived Atrial and Ventricular Cardiomyocytes Develop from Distinct Mesoderm Populations, Cell stem cell, vol.21, pp.179-194, 2017.

F. Lescroart, S. Chabab, X. Lin, S. Rulands, C. Paulissen et al., Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development, Nature cell biology, vol.16, pp.829-840, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02441180

F. Lescroart, W. Hamou, A. Francou, M. Theveniau-ruissy, R. G. Kelly et al., Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium, Proceedings of the National Academy of Sciences of the United States of America, vol.112, pp.1446-1451, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01432719

F. Lescroart, R. G. Kelly, L. Garrec, J. F. Nicolas, J. F. Meilhac et al., Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo, Development, vol.137, pp.3269-3279, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00567073

F. Lescroart and S. M. Meilhac, Cell lineages, growth and repair of the mouse heart, Results Probl Cell Differ, vol.55, pp.263-289, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02020773

F. Lescroart, X. Wang, X. Lin, B. Swedlund, S. Gargouri et al., Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq, Science, vol.359, pp.1177-1181, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02441074

X. Liang, G. Wang, L. Lin, J. Lowe, Q. Zhang et al., , p.4, 2013.

, Dynamically Marks the First Heart Field and Conduction System Precursors, Circulation research, vol.113, pp.399-407

E. A. Lindsay, F. Vitelli, H. Su, M. Morishima, T. Huynh et al., Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice, Nature, vol.410, pp.97-101, 2001.

R. C. Lindsley, J. G. Gill, T. L. Murphy, E. M. Langer, M. Cai et al., Mesp1 coordinately regulates cardiovascular fate restriction and epithelialmesenchymal transition in differentiating ESCs, Cell stem cell, vol.3, pp.55-68, 2008.

Y. Liu, Earlier and broader roles of Mesp1 in cardiovascular development, Cellular and molecular life sciences : CMLS, vol.74, pp.1969-1983, 2017.

Y. Liu, M. Asakura, H. Inoue, T. Nakamura, M. Sano et al., Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.3859-3864, 2007.

K. M. Loh, A. Chen, P. W. Koh, T. Z. Deng, R. Sinha et al., Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types. Cell, vol.166, pp.451-467, 2016.

L. Luna-zurita, C. U. Stirnimann, S. Glatt, B. L. Kaynak, S. Thomas et al., Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis, Cell, vol.164, pp.999-1014, 2016.

I. Lyons, L. M. Parsons, L. Hartley, R. Li, J. E. Andrews et al., Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene, pp.2-5, 1995.

, Genes & development, vol.9, pp.1654-1666

D. Macgrogan, J. Munch, and J. L. De-la-pompa, Notch and interacting signalling pathways in cardiac development, disease, and regeneration, Nature reviews Cardiology, vol.15, pp.685-704, 2018.

D. Macgrogan, M. Nus, and J. L. De-la-pompa, Notch signaling in cardiac development and disease, Current topics in developmental biology, vol.92, pp.333-365, 2010.

A. Mandal, A. Holowiecki, Y. C. Song, and J. S. Waxman, Wnt signaling balances specification of the cardiac and pharyngeal muscle fields, Mechanisms of development, vol.143, pp.32-41, 2017.

M. J. Marvin, D. Rocco, G. Gardiner, A. Bush, S. M. Lassar et al., Inhibition of Wnt activity induces heart formation from posterior mesoderm, Genes & development, vol.15, pp.316-327, 2001.

B. Mcbratney-owen, S. Iseki, S. D. Bamforth, B. R. Olsen, and G. M. Morriss-kay, Development and tissue origins of the mammalian cranial base, Developmental biology, vol.322, pp.121-132, 2008.

S. M. Meilhac and M. E. Buckingham, The deployment of cell lineages that form the mammalian heart, Nature reviews Cardiology, vol.15, pp.705-724, 2018.

S. M. Meilhac, M. Esner, R. G. Kelly, J. F. Nicolas, and M. E. Buckingham, The clonal origin of myocardial cells in different regions of the embryonic mouse heart, Developmental cell, vol.6, pp.685-698, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00311144

T. Mikawa and D. A. Fischman, The polyclonal origin of myocyte lineages, Annu Rev Physiol, vol.58, pp.509-521, 1996.

Y. Mishina, A. Suzuki, N. Ueno, and R. R. Behringer, Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis, Genes & development, vol.9, pp.3027-3037, 1995.

S. Miura, S. Davis, J. Klingensmith, and Y. Mishina, BMP signaling in the epiblast is required for proper recruitment of the prospective paraxial mesoderm and development of the somites, Development, vol.133, pp.3767-3775, 2006.

M. T. Mommersteeg, J. N. Dominguez, C. Wiese, J. Norden, C. De-gier-de-vries et al., The sinus venosus progenitors separate and diversify from the first and second heart fields early in development, Cardiovascular research, vol.87, pp.92-101, 2010.

A. Moretti, L. Caron, A. Nakano, J. T. Lam, A. Bernshausen et al., Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification, Cell, vol.127, pp.1151-1165, 2006.

T. Motoike, D. W. Markham, J. Rossant, and T. N. Sato, Evidence for novel fate of Flk1+ progenitor: contribution to muscle lineage, Genesis, vol.35, pp.153-159, 2000.

A. T. Naito, I. Shiojima, H. Akazawa, K. Hidaka, T. Morisaki et al., Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.19812-19817, 2006.

N. Nandkishore, B. Vyas, A. Javali, S. Ghosh, and R. Sambasivan, Divergent early mesoderm specification underlies distinct head and trunk muscle programmes in vertebrates, Development, p.145, 2018.

E. Nathan, A. Monovich, L. Tirosh-finkel, Z. Harrelson, T. Rousso et al., The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development, Development, vol.135, pp.647-657, 2008.

T. J. Nelson, R. S. Faustino, A. Chiriac, R. Crespo-diaz, A. Behfar et al., CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells, Stem Cells, vol.26, pp.1464-1473, 2008.

M. Nemir, A. Croquelois, T. Pedrazzini, and F. Radtke, Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling, Circulation research, vol.98, pp.1471-1478, 2006.

T. Neri, E. Hiriart, P. P. Van-vliet, E. Faure, R. A. Norris et al., Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis, Nature communications, vol.10, 1929.

K. Nevis, P. Obregon, C. Walsh, B. Guner-ataman, C. G. Burns et al., Tbx1 is required for second heart field proliferation in zebrafish. Developmental dynamics : an official publication of the, American Association of Anatomists, vol.242, pp.550-559, 2013.

M. Noseda and M. D. Schneider, Unleashing cardiopoiesis: a novel role for G-CSF, Cell stem cell, vol.6, pp.188-189, 2010.

S. Ounzain, R. Micheletti, C. Arnan, I. Plaisance, D. Cecchi et al., CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis, J Mol Cell Cardiol, vol.89, pp.98-112, 2015.

N. Paffett-lugassy, N. Novikov, S. Jeffrey, M. Abrial, B. Guner-ataman et al., Unique developmental trajectories and genetic regulation of ventricular and outflow tract progenitors in the zebrafish second heart field, Development, vol.144, pp.4616-4624, 2017.

S. L. Paige, T. Osugi, O. K. Afanasiev, L. Pabon, H. Reinecke et al., Endogenous Wnt/betacatenin signaling is required for cardiac differentiation in human embryonic stem cells, PloS one, vol.5, p.11134, 2010.

S. L. Paige, S. Thomas, C. L. Stoick-cooper, H. Wang, L. Maves et al., A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development, Cell, vol.151, pp.221-232, 2012.

E. J. Park, L. A. Ogden, A. Talbot, S. Evans, C. L. Cai et al., Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling, Development, vol.133, pp.2419-2433, 2006.

E. J. Park, Y. Watanabe, G. Smyth, S. Miyagawa-tomita, E. Meyers et al., An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart, Development, vol.135, pp.3599-3610, 2008.

M. D. Phillips, M. Mukhopadhyay, C. Poscablo, and H. Westphal, Dkk1 and Dkk2 regulate epicardial specification during mouse heart development, International journal of cardiology, vol.150, pp.186-192, 2011.

S. I. Protze, J. Liu, U. Nussinovitch, L. Ohana, P. H. Backx et al., Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker, Nature biotechnology, vol.35, pp.56-68, 2017.

R. Quaranta, J. Fell, F. Ruhle, J. Rao, I. Piccini et al., Revised roles of ISL1 in a hES cell-based model of human heart chamber specification, vol.7, 2018.

Y. Qyang, S. Martin-puig, M. Chiravuri, S. Chen, H. Xu et al., The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/betacatenin pathway, Cell stem cell, vol.1, pp.165-179, 2007.

C. Racioppi, K. A. Wiechecki, and L. Christiaen, Combinatorial chromatin dynamics foster accurate cardiopharyngeal fate choices, 2019.

F. Razy-krajka, B. Gravez, N. Kaplan, C. Racioppi, W. Wang et al., An FGF-driven feedforward circuit patterns the cardiopharyngeal mesoderm in space and time, vol.7, 2018.

F. Razy-krajka, K. Lam, W. Wang, A. Stolfi, M. Joly et al., Collier/OLF/EBFdependent transcriptional dynamics control pharyngeal muscle specification from primed cardiopharyngeal progenitors, Developmental cell, vol.29, pp.263-276, 2014.

R. Romagnuolo, H. Masoudpour, A. Porta-sanchez, B. Qiang, J. Barry et al., Human Embryonic Stem Cell-Derived Cardiomyocytes Regenerate the Infarcted Pig Heart but Induce Ventricular Tachyarrhythmias, Stem Cell Reports, vol.12, pp.967-981, 2019.

R. Saba, K. Kitajima, L. Rainbow, S. Engert, M. Uemura et al., Sox17 expression in endocardium precursor cells regulates heart development in mice, 2019.

T. Sadahiro, M. Isomi, N. Muraoka, H. Kojima, S. Haginiwa et al., Tbx6 Induces Nascent Mesoderm from Pluripotent Stem Cells and Temporally Controls Cardiac versus Somite Lineage Diversification, Cell stem cell, vol.23, pp.382-395, 2018.

Y. Saga, N. Hata, S. Kobayashi, T. Magnuson, M. F. Seldin et al., MesP1: a novel basic helixloop-helix protein expressed in the nascent mesodermal cells during mouse gastrulation, Development, vol.122, pp.2769-2778, 1996.

Y. Saga, S. Kitajima, and S. Miyagawa-tomita, Mesp1 expression is the earliest sign of cardiovascular development, Trends Cardiovasc Med, vol.10, pp.345-352, 2000.

Y. Saga, S. Miyagawa-tomita, A. Takagi, S. Kitajima, J. Miyazaki et al., MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube, Development, vol.126, pp.3437-3447, 1999.

L. Saint-jean, N. Barkas, C. Harmelink, K. L. Tompkins, R. J. Oakey et al., Myocardial differentiation is dependent upon endocardial signaling during early cardiogenesis in vitro, Development, p.146, 2019.

R. Sambasivan, B. Gayraud-morel, G. Dumas, C. Cimper, S. Paisant et al., Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates, Developmental cell, vol.16, pp.810-821, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00428975

Y. Satou, K. S. Imai, and N. Satoh, The ascidian Mesp gene specifies heart precursor cells, Development, vol.131, pp.2533-2541, 2004.

V. A. Schneider and M. Mercola, Wnt antagonism initiates cardiogenesis in Xenopus laevis, Genes & development, vol.15, pp.304-315, 2001.

J. J. Schott, D. W. Benson, C. T. Basson, W. Pease, G. M. Silberbach et al., Congenital heart disease caused by mutations in the transcription factor NKX2-5, Science, vol.281, pp.108-111, 1998.

T. Schroeder, S. T. Fraser, M. Ogawa, S. Nishikawa, C. Oka et al., Recombination signal sequence-binding protein Jkappa alters mesodermal cell fate decisions by suppressing cardiomyogenesis, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.4018-4023, 2003.

W. J. Shim, E. Sinniah, J. Xu, B. Vitrinel, M. Alexanian et al., Comparative analysis of diverse cell states establishes an epigenetic basis for inferring regulatory genes governing cell identity, 2019.

C. Showell, O. Binder, and F. L. Conlon, T-box genes in early embryogenesis. Developmental dynamics : an official publication of the, American Association of Anatomists, vol.229, pp.201-218, 2004.

R. J. Skelton, B. Brady, S. Khoja, D. Sahoo, J. Engel et al., CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells, Stem Cell Reports, vol.6, pp.95-108, 2016.

D. Spater, M. K. Abramczuk, K. Buac, L. Zangi, M. W. Stachel et al.,

, A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells, Nature cell biology

D. Srivastava, Genetic regulation of cardiogenesis and congenital heart disease, Annu Rev Pathol, vol.1, pp.199-213, 2006.

H. Stalsberg and R. L. Dehaan, The precardiac areas and formation of the tubular heart in the chick embryo, Developmental biology, vol.19, pp.128-159, 1969.

S. Stefanovic and S. Zaffran, Mechanisms of retinoic acid signaling during cardiogenesis, Mechanisms of development, vol.143, pp.9-19, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01430833

S. Stefanovic, B. Laforest, J. P. Desvignes, F. Lescroart, L. Argiro et al., Hox-Dependent Coordination of Cardiac Cell Patterning and Differentiation, 2019.

A. Stolfi, T. B. Gainous, J. J. Young, A. Mori, M. Levine et al., Early chordate origins of the vertebrate second heart field, Science, vol.329, pp.565-568, 2010.

J. K. Takeuchi and B. G. Bruneau, Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors, Nature, vol.459, pp.708-711, 2009.

P. P. Tam and R. R. Behringer, Mouse gastrulation: the formation of a mammalian body plan, Mechanisms of development, vol.68, pp.3-25, 1997.

M. Tanaka, Z. Chen, S. Bartunkova, N. Yamasaki, and S. Izumo, The cardiac homeobox gene, 1999.

. Csx/nkx2, 5 lies genetically upstream of multiple genes essential for heart development, Development, vol.126, pp.1269-1280

L. Tirosh-finkel, H. Elhanany, A. Rinon, and E. Tzahor, Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract, Development, vol.133, pp.1943-1953, 2006.

E. Tzahor, H. Kempf, R. C. Mootoosamy, A. C. Poon, A. Abzhanov et al., Antagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle, Genes & development, vol.17, pp.3087-3099, 2003.

E. Tzahor and A. B. Lassar, Wnt signals from the neural tube block ectopic cardiogenesis, Genes & development, vol.15, pp.255-260, 2001.

S. Ueno, G. Weidinger, T. Osugi, A. D. Kohn, J. L. Golob et al.,

, Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.9685-9690

J. Van-den-ameele, L. Tiberi, A. Bondue, C. Paulissen, A. Herpoel et al., Eomesodermin induces Mesp1 expression and cardiac differentiation from embryonic stem cells in the absence of Activin, EMBO Rep, vol.13, pp.355-362, 2012.

B. Van-handel, A. Montel-hagen, R. Sasidharan, H. Nakano, R. Ferrari et al., Scl represses cardiomyogenesis in prospective hemogenic endothelium and endocardium, Cell, vol.150, pp.590-605, 2012.

M. P. Verzi, D. J. Mcculley, D. Val, S. Dodou, E. Black et al., The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field, Developmental biology, vol.287, pp.134-145, 2005.

F. Vitelli, I. Taddei, M. Morishima, E. N. Meyers, E. A. Lindsay et al., A genetic link between Tbx1 and fibroblast growth factor signaling, Development, vol.129, pp.4605-4611, 2002.

J. A. Wamstad, J. M. Alexander, R. M. Truty, A. Shrikumar, F. Li et al., Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage, Cell, vol.151, pp.206-220, 2012.

H. Wang, H. Yang, C. S. Shivalila, M. M. Dawlaty, A. W. Cheng et al., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering, Cell, vol.153, pp.910-918, 2013.

W. Wang, X. Niu, T. Stuart, E. Jullian, W. Mauck et al., A single cell transcriptional roadmap for cardiopharyngeal fate diversification, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02436618

Y. Watanabe, S. Miyagawa-tomita, S. D. Vincent, R. G. Kelly, A. M. Moon et al., Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries, Circulation research, vol.106, pp.495-503, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00505914

Y. Watanabe, S. Zaffran, A. Kuroiwa, H. Higuchi, T. Ogura et al., Fibroblast growth factor 10 gene regulation in the second heart field by Tbx1, Nkx2-5, and Islet1 reveals a genetic switch for down-regulation in the myocardium, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.18273-18280, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00838794

Y. Wei and T. Mikawa, Fate diversity of primitive streak cells during heart field formation in ovo. Developmental dynamics : an official publication of the, American Association of Anatomists, vol.219, pp.505-513, 2000.

H. R. Witzel, B. Jungblut, C. P. Choe, J. G. Crump, T. Braun et al., The LIM protein Ajuba restricts the second heart field progenitor pool by regulating Isl1 activity, Developmental cell, vol.23, pp.58-70, 2012.

S. M. Wu, Y. Fujiwara, S. M. Cibulsky, D. E. Clapham, C. L. Lien et al., Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart, Cell, vol.127, pp.1137-1150, 2006.

J. Xavier-neto, C. M. Neville, M. D. Shapiro, L. Houghton, G. F. Wang et al., A retinoic acid-inducible transgenic marker of sino-atrial development in the mouse heart, Development, vol.126, pp.2677-2687, 1999.

C. Xu, G. Liguori, M. G. Persico, and E. D. Adamson, Abrogation of the Cripto gene in mouse leads to failure of postgastrulation morphogenesis and lack of differentiation of cardiomyocytes, Development, vol.126, pp.483-494, 1999.

L. Yang, M. H. Soonpaa, E. D. Adler, T. K. Roepke, S. J. Kattman et al., Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population, Nature, vol.453, pp.524-528, 2008.

C. Yoon, H. Song, T. Yin, D. Bausch-fluck, A. P. Frei et al., FZD4 Marks Lateral Plate Mesoderm and Signals with NORRIN to Increase Cardiomyocyte Induction from Pluripotent Stem Cell-Derived Cardiac Progenitors, Stem Cell Reports, vol.10, pp.87-100, 2018.

T. Yoshida, P. Vivatbutsiri, G. Morriss-kay, Y. Saga, and S. Iseki, Cell lineage in mammalian craniofacial mesenchyme, Mechanisms of development, vol.125, pp.797-808, 2008.

X. Yuan, M. Song, P. Devine, B. G. Bruneau, I. C. Scott et al., Heart enhancers with deeply conserved regulatory activity are established early in zebrafish development, Nature communications, vol.9, p.4977, 2018.

J. Zhang, R. Tao, K. F. Campbell, J. L. Carvalho, E. C. Ruiz et al., Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors, Nature communications, vol.10, p.2238, 2019.

Q. Zhang, J. Jiang, P. Han, Q. Yuan, J. Zhang et al., Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals, Cell research, vol.21, pp.579-587, 2011.

Z. Zhou, J. Wang, C. Guo, W. Chang, J. Zhuang et al., Temporally Distinct Six2-Positive Second Heart Field Progenitors Regulate Mammalian Heart Development and Disease, Cell reports, vol.18, pp.1019-1032, 2017.