J. I. Hoffman and S. Kaplan, The incidence of congenital heart disease, J. Am. Coll. Cardiol, vol.39, pp.1890-1900, 2002.

H. H. Sievers and C. Schmidtke, A classification system for the bicuspid aortic valve from 304 surgical specimens, J. Thorac. Cardiovasc. Surg, vol.133, pp.1226-1233, 2007.

B. Fernandez, A. C. Duran, T. Fernandez-gallego, M. C. Fernandez, M. Such et al., Sans-Coma, V. Bicuspid aortic valves with different spatial orientations of the leaflets are distinct etiological entities, J. Am. Coll. Cardiol, vol.54, pp.2312-2318, 2009.

G. Odelin, E. Faure, F. Coulpier, M. Di-bonito, F. Bajolle et al., Krox20 defines a subpopulation of cardiac neural crest cells contributing to arterial valves and bicuspid aortic valve, vol.145, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01874792

A. D. Person, S. E. Klewer, and R. B. Runyan, Cell biology of cardiac cushion development, Int. Rev. Cytol, vol.243, pp.287-335, 2005.

T. Papoutsi, L. Luna-zurita, B. Prados, S. Zaffran, and J. L. De-la-pompa, Bmp2 and notch cooperate to pattern the embryonic endocardium, Development, vol.145, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01874794

F. J. De-lange, A. F. Moorman, R. H. Anderson, J. Manner, A. T. Soufan et al., Lineage and morphogenetic analysis of the cardiac valves, Circ. Res, vol.95, pp.645-654, 2004.

J. Lincoln, C. M. Alfieri, and K. E. Yutzey, Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos, Dev. Dyn. Off. Publ. Am. Assoc. Anat, vol.230, pp.239-250, 2004.

R. B. Hinton, . Jr, J. Lincoln, G. H. Deutsch, H. Osinska et al., Extracellular matrix remodeling and organization in developing and diseased aortic valves, Circ. Res, vol.98, pp.1431-1438, 2006.

L. E. Dupuis, D. R. Mcculloch, J. D. Mcgarity, A. Bahan, A. Wessels et al., Altered versican cleavage in adamts5 deficient mice; a novel etiology of myxomatous valve disease, Dev. Biol, vol.357, pp.152-164, 2011.

L. E. Dupuis, H. Osinska, M. B. Weinstein, R. B. Hinton, and C. B. Kern, Insufficient versican cleavage and smad2 phosphorylation results in bicuspid aortic and pulmonary valves, J. Mol. Cell. Cardiol, vol.60, pp.50-59, 2013.

G. Odelin, E. Faure, F. Kober, C. Maurel-zaffran, A. Theron et al., Loss of krox20 results in aortic valve regurgitation and impaired transcriptional activation of fibrillar collagen genes, Cardiovasc. Res, vol.104, pp.443-455, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02119125

R. Jain, K. A. Engleka, S. L. Rentschler, L. J. Manderfield, L. Li et al., Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves, J. Clin. Investig, vol.121, 2011.

H. M. Phillips, P. Mahendran, E. Singh, R. H. Anderson, B. Chaudhry et al., Neural crest cells are required for correct positioning of the developing outflow cushions and pattern the arterial valve leaflets, Cardiovasc. Res, vol.99, pp.452-460, 2013.

Y. C. Boo and H. Jo, Flow-dependent regulation of endothelial nitric oxide synthase: Role of protein kinases, Am. J. Physiol. Cell Physiol, vol.285, pp.499-508, 2003.

T. C. Lee, Y. D. Zhao, D. W. Courtman, and D. J. Stewart, Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase, Circulation, vol.101, pp.2345-2348, 2000.

D. Aicher, C. Urbich, A. Zeiher, S. Dimmeler, and H. J. Schafers, Endothelial nitric oxide synthase in bicuspid aortic valve disease, Ann. Thorac. Surg, vol.83, pp.1290-1294, 2007.

L. Eley, A. M. Alqahtani, D. Macgrogan, R. V. Richardson, L. Murphy et al., A novel source of arterial valve cells linked to bicuspid aortic valve without raphe in mice

J. J. Mifflin, L. E. Dupuis, N. E. Alcala, L. G. Russell, and C. B. Kern, Intercalated cushion cells within the cardiac outflow tract are derived from the myocardial troponin t type 2 (tnnt2) cre lineage, Dev. Dyn. Off. Publ. Am. Assoc. Anat, vol.247, pp.1005-1017, 2018.

J. C. Peterson, M. Chughtai, L. J. Wisse, A. C. Gittenberger-de-groot, Q. Feng et al., Bicuspid aortic valve formation: Nos3 mutation leads to abnormal lineage patterning of neural crest cells and the second heart field, Dis. Models Mech, vol.11, 2018.

K. Bosse, C. P. Hans, N. Zhao, S. N. Koenig, N. Huang et al., Endothelial nitric oxide signaling regulates notch1 in aortic valve disease, J. Mol. Cell. Cardiol, vol.60, pp.27-35, 2013.

A. Theron, G. Odelin, E. Faure, J. F. Avierinos, and S. Zaffran, Krox20 heterozygous mice: A model of aortic regurgitation associated with decreased expression of fibrillar collagen genes, Arch. Cardiovasc. Dis, vol.109, pp.188-198, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01469055

V. Garg, A. N. Muth, J. F. Ransom, M. K. Schluterman, R. Barnes et al., Mutations in notch1 cause aortic valve disease, Nature, vol.437, pp.270-274, 2005.

B. Laforest, G. Andelfinger, and M. Nemer, Loss of gata5 in mice leads to bicuspid aortic valve, J. Clin. Investig, vol.121, pp.2876-2887, 2011.

P. S. Thomas, S. Sridurongrit, P. Ruiz-lozano, and V. Kaartinen, Deficient signaling via alk2 (acvr1) leads to bicuspid aortic valve development, PLoS ONE, vol.7, p.35539, 2012.

M. T. Mommersteeg, M. L. Yeh, J. G. Parnavelas, and W. D. Andrews, Disrupted slit-robo signalling results in membranous ventricular septum defects and bicuspid aortic valves, Cardiovasc. Res, vol.106, pp.55-66, 2015.

R. A. Gould, H. Aziz, C. E. Woods, M. A. Seman-senderos, E. Sparks et al., Robo4 variants predispose individuals to bicuspid aortic valve and thoracic aortic aneurysm, Nat. Genet, vol.51, pp.42-50, 2019.

S. Schneider-maunoury, P. Topilko, T. Seitandou, G. Levi, M. Cohen-tannoudji et al., Disruption of krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain, Cell, vol.75, pp.1199-1214, 1993.

E. G. Shesely, N. Maeda, H. S. Kim, K. M. Desai, J. H. Krege et al., Elevated blood pressures in mice lacking endothelial nitric oxide synthase, Proc. Natl. Acad. Sci, vol.93, pp.13176-13181, 1996.

R. A. Gould and J. T. Butcher, Isolation of valvular endothelial cells, J. Vis. Exp, vol.46, 2010.

S. W. Jang, S. E. Leblanc, A. Roopra, L. Wrabetz, and J. Svaren, In vivo detection of egr2 binding to target genes during peripheral nerve myelination, J. Neurochem, vol.98, pp.1678-1687, 2006.

Y. Liu, X. Lu, F. L. Xiang, M. Lu, and Q. Feng, Nitric oxide synthase-3 promotes embryonic development of atrioventricular valves, PLoS ONE, vol.8, 2013.

B. Laforest and M. Nemer, Genetic insights into bicuspid aortic valve formation, Cardiol. Res. Pract, 2012.

P. W. Fedak and A. J. Barker, Is concomitant aortopathy unique with bicuspid aortic valve stenosis?, J. Am. College Cardiol, vol.67, pp.1797-1799, 2016.

A. Masri, L. G. Svensson, B. P. Griffin, and M. Y. Desai, Contemporary natural history of bicuspid aortic valve disease: A systematic review, vol.103, pp.1323-1330, 2017.

H. I. Michelena, A. Della-corte, S. K. Prakash, D. M. Milewicz, A. Evangelista et al., Bicuspid aortic valve aortopathy in adults: Incidence, etiology, and clinical significance, Int. J. Cardiol, vol.201, pp.400-407, 2015.

J. T. Butcher, G. J. Mahler, and L. A. Hockaday, Aortic valve disease and treatment: The need for naturally engineered solutions, Adv. Drug Deliv. Rev, vol.63, pp.242-268, 2011.

J. T. Butcher and R. M. Nerem, Valvular endothelial cells and the mechanoregulation of valvular pathology, Philos. Trans. R. Soc. B Biol. Sci, vol.362, pp.1445-1457, 2007.

J. Richards, I. El-hamamsy, S. Chen, Z. Sarang, P. Sarathchandra et al., Side-specific endothelial-dependent regulation of aortic valve calcification: Interplay of hemodynamics and nitric oxide signaling, Am. J. Pathol, vol.182, 1922.

S. T. Gould, E. E. Matherly, J. N. Smith, D. D. Heistad, and K. S. Anseth, The role of valvular endothelial cell paracrine signaling and matrix elasticity on valvular interstitial cell activation, Biomaterials, vol.35, pp.3596-3606, 2014.

R. A. Gould, L. M. Aboulmouna, J. D. Varner, and J. T. Butcher, Hierarchical approaches for systems modeling in cardiac development, Wiley Interdiscip. Rev. Syst. Biol. Med, vol.5, pp.289-305, 2013.