J. Amendola, A. Woodhouse, M. F. Martin-eauclaire, and J. M. Goaillard, Ca(2)(?)/cAMP-sensitive covariation of I(A) and I(H) voltage dependences tunes rebound firing in dopaminergic neurons, J Neurosci, vol.32, pp.2166-2181, 2012.

B. P. Bean, The action potential in mammalian central neurons, Nat Rev Neurosci, vol.8, pp.451-465, 2007.

J. Bischofberger and J. P. , Action potential propagation into the presynaptic dendrites of rat mitral cells, J Physiol, vol.504, pp.359-365, 1997.

S. N. Blythe, D. Wokosin, J. F. Atherton, and M. D. Bevan, Cellular mechanisms underlying burst firing in substantia nigra dopamine neurons, J Neurosci, vol.29, pp.15531-15541, 2009.

S. R. Cajal, Histologie du systeme nerveux de l'homme and des vertebres, Consejo Superior de Investigaciones Científicas, 1952.

N. T. Carnevale and M. L. Hines, The NEURON book: Cambridge: Cambridge UP, 2006.

C. S. Chan, J. N. Guzman, E. Ilijic, J. N. Mercer, C. Rick et al., Rejuvenation' protects neurons in mouse models of Parkinson's disease, Nature, vol.447, pp.1081-1086, 2007.

A. N. Chand, E. Galliano, R. A. Chesters, and M. S. Grubb, A distinct subtype of dopaminergic interneuron displays inverted structural plasticity at the axon initial segment, J Neurosci, vol.35, pp.1573-1590, 2015.

D. B. Chklovskii, Optimal sizes of dendritic and axonal arbors in a topographic projection, J Neurophysiol, vol.83, pp.2113-2119, 2000.

B. D. Clark, E. M. Goldberg, and R. B. , Electrogenic tuning of the axon initial segment, Neuroscientist, vol.15, pp.651-668, 2009.

J. S. Coombs, D. R. Curtis, and J. C. Eccles, The generation of impulses in motoneurones, J Physiol, vol.139, pp.232-249, 1957.

H. Cuntz, A. Borst, and I. Segev, Optimization principles of dendritic structure, Theor Biol Med Model, vol.4, p.21, 2007.

D. Debanne, E. Campanac, A. Bialowas, E. Carlier, and G. Alcaraz, Axon physiology, Physiol Rev, vol.91, pp.555-602, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01766861

A. Destexhe, A. Babloyantz, and T. J. Sejnowski, Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons, Biophys J, vol.65, pp.1538-1552, 1993.

S. Ding, W. Wei, and F. M. Zhou, Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra, J Neurophysiol, vol.106, pp.3019-3034, 2011.

S. Ding, S. G. Matta, and F. M. Zhou, Kv3-like potassium channels are required for sustained high-frequency firing in basal ganglia output neurons, J Neurophysiol, vol.105, pp.554-570, 2011.

G. Drion, L. Massotte, R. Sepulchre, and V. Seutin, How modeling can reconcile apparently discrepant experimental results: the case of pacemaking in dopaminergic neurons, PLoS Comput Biol, vol.7, p.1002050, 2011.

M. A. Dufour, A. Woodhouse, J. Amendola, and J. M. Goaillard, Non-linear developmental trajectory of electrical phenotype in rat substantia nigra pars compacta dopaminergic neurons. Elife. Advance online publication, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01244665

D. Engel and V. Seutin, High dendritic expression of Ih in the proximity of the axon origin controls the integrative properties of nigral dopamine neurons, J Physiol, vol.593, pp.4905-4922, 2015.

S. I. Fried, A. C. Lasker, N. J. Desai, D. K. Eddington, and J. F. Rizzo, Axonal sodium-channel bands shape the response to electric stimulation in retinal ganglion cells, J Neurophysiol, vol.101, pp.1972-1987, 2009.

S. C. Gantz, C. P. Ford, H. Morikawa, and J. T. Williams, The evolving understanding of dopamine neurons in the substantia nigra and ventral tegmental area, Annu Rev Physiol, vol.80, pp.219-241, 2018.

L. J. Gentet and S. R. Williams, Dopamine gates action potential backpropagation in midbrain dopaminergic neurons, J Neurosci, vol.27, pp.1892-1901, 2007.

C. González-cabrera, R. Meza, L. Ulloa, P. Merino-sepú-lveda, V. Luco et al., Characterization of the axon initial segment of mice substantia nigra dopaminergic neurons, J Comp Neurol, vol.525, pp.3529-3542, 2017.

A. A. Grace and B. S. Bunney, Intracellular and extracellular electrophysiology of nigral dopaminergic neurons: 2. Action potential generating mechanisms and morphological correlates, Neuroscience, vol.10, pp.317-331, 1983.

A. A. Grace and B. S. Bunney, The control of firing pattern in nigral dopamine neurons: single spike firing, J Neurosci, vol.4, pp.2866-2876, 1984.

A. A. Grace and S. P. Onn, Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro, J Neurosci, vol.9, pp.3463-3481, 1989.

M. S. Grubb and J. Burrone, Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability, Nature, vol.465, pp.1070-1074, 2010.

A. T. Gulledge and J. J. Bravo, Neuron morphology influences axon initial segment plasticity, vol.3, pp.85-100, 2016.

A. Gutzmann, N. Ergül, R. Grossmann, C. Schultz, P. Wahle et al., A period of structural plasticity at the axon initial segment in developing visual cortex, Front Neuroanat, vol.8, p.11, 2014.

J. N. Guzman, J. Sánchez-padilla, C. S. Chan, and D. J. Surmeier, Robust pacemaking in substantia nigra dopaminergic neurons, J Neurosci, vol.29, pp.11011-11019, 2009.

M. S. Hamada, S. Goethals, S. I. De-vries, R. Brette, and M. H. Kole, Covariation of axon initial segment location and dendritic tree normalizes the somatic action potential, Proc Natl Acad Sci U S A, vol.113, pp.14841-14846, 2016.

M. Häusser, G. Stuart, C. Racca, and B. Sakmann, Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons, Neuron, vol.15, pp.637-647, 1995.

E. Hay, F. Schürmann, H. Markram, and I. Segev, Preserving axosomatic spiking features despite diverse dendritic morphology, J Neurophysiol, vol.109, pp.2972-2981, 2013.

J. Hesse and S. Schreiber, Externalization of neuronal somata as an evolutionary strategy for energy economization, Curr Biol, vol.25, pp.324-325, 2015.

M. L. Hines and N. T. Carnevale, The NEURON simulation environment, Neural Comput, vol.9, pp.1179-1209, 1997.

M. L. Hines and N. T. Carnevale, NEURON: a tool for neuroscientists, Neuroscientist, vol.7, pp.123-135, 2001.

W. Hu, C. Tian, T. Li, M. Yang, H. Hou et al., Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation, Nat Neurosci, vol.12, pp.996-1002, 2009.

J. Jang, K. B. Um, M. Jang, S. H. Kim, H. Cho et al., Balance between the proximal dendritic compartment and the soma determines spontaneous firing rate in midbrain dopamine neurons, J Physiol, vol.592, pp.2829-2844, 2014.

M. H. Kole and R. Brette, The electrical significance of axon location diversity, Curr Opin Neurobiol, vol.51, pp.52-59, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01740172

M. H. Kole and G. J. Stuart, Signal processing in the axon initial segment, Neuron, vol.73, pp.235-247, 2012.

M. H. Kole, S. U. Ilschner, B. M. Kampa, S. R. Williams, P. C. Ruben et al., Action potential generation requires a high sodium channel density in the axon initial segment, Nat Neurosci, vol.11, pp.178-186, 2008.

G. J. Kress, M. J. Dowling, J. P. Meeks, and S. Mennerick, High threshold, proximal initiation, and slow conduction velocity of action potentials in dentate granule neuron mossy fibers, J Neurophysiol, vol.100, pp.281-291, 2008.

G. J. Kress, M. J. Dowling, L. N. Eisenman, and S. Mennerick, Axonal sodium channel distribution shapes the depolarized action potential threshold of dentate granule neurons, Hippocampus, vol.20, pp.558-571, 2010.

H. Kuba, Structural tuning and plasticity of the axon initial segment in auditory neurons, J Physiol, vol.590, pp.5571-5579, 2012.

H. Kuba, T. M. Ishii, and H. Ohmori, Axonal site of spike initiation enhances auditory coincidence detection, Nature, vol.444, pp.1069-1072, 2006.

H. Kuba, R. Adachi, and H. Ohmori, Activity-dependent and activityindependent development of the axon initial segment, J Neurosci, vol.34, pp.3443-3453, 2014.

A. Y. Kuznetsova, M. A. Huertas, A. S. Kuznetsov, C. A. Paladini, and C. C. Canavier, Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron, J Comput Neurosci, vol.28, pp.389-403, 2010.

J. Lezmy, M. Lipinsky, Y. Khrapunsky, E. Patrich, L. Shalom et al., M-current inhibition rapidly induces a unique CK2-dependent plasticity of the axon initial segment, Proc Natl Acad Sci U S A, vol.114, pp.10234-10243, 2017.

C. C. Lien and P. Jonas, Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons, J Neurosci, vol.23, pp.2058-2068, 2003.

B. Liss and J. Roeper, Individual dopamine midbrain neurons: functional diversity and flexibility in health and disease, Brain Res Rev, vol.58, pp.314-321, 2008.

M. H. Longair, D. A. Baker, and J. D. Armstrong, Simple neurite tracer: open source software for reconstruction, visualization and analysis of neuronal processes, Bioinformatics, vol.27, pp.2453-2454, 2011.

A. Lorincz and Z. Nusser, Cell-type-dependent molecular composition of the axon initial segment, J Neurosci, vol.28, pp.14329-14340, 2008.

A. Lorincz and Z. Nusser, Molecular identity of dendritic voltage-gated sodium channels, Science, vol.328, pp.906-909, 2010.

Z. F. Mainen and T. J. Sejnowski, Influence of dendritic structure on firing pattern in model neocortical neurons, Nature, vol.382, pp.363-366, 1996.

Z. F. Mainen, N. T. Carnevale, A. M. Zador, B. J. Claiborne, and T. H. Brown, Electrotonic architecture of hippocampal CA1 pyramidal neurons based on three-dimensional reconstructions, J Neurophysiol, vol.76, pp.1904-1923, 1996.

M. Martina, I. Vida, and J. P. , Distal initiation and active propagation of action potentials in interneuron dendrites, Science, vol.287, pp.295-300, 2000.

W. Matsuda, T. Furuta, K. C. Nakamura, H. Hioki, F. Fujiyama et al., Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum, J Neurosci, vol.29, pp.444-453, 2009.

Y. Matsuda, K. Fujimura, and S. Yoshida, Two types of neurons in the substantia nigra pars compacta studied in a slice preparation, Neurosci Res, vol.5, pp.172-179, 1987.

J. P. Meeks and S. Mennerick, Action potential initiation and propagation in CA3 pyramidal axons, J Neurophysiol, vol.97, pp.3460-3472, 2007.

R. C. Meza, L. Ló-pez-jury, C. C. Canavier, and P. Henny, Role of the axon initial segment in the control of spontaneous frequency of nigral dopaminergic neurons in vivo, J Neurosci, vol.38, pp.733-744, 2018.

M. Migliore, C. Cannia, and C. C. Canavier, A modeling study suggesting a possible pharmacological target to mitigate the effects of ethanol on reward-related dopaminergic signaling, J Neurophysiol, vol.99, pp.2703-2707, 2008.

J. E. Niven, Neural evolution: marginal gains through soma location, Curr Biol, vol.25, pp.330-332, 2015.

A. G. Otopalik, A. C. Sutton, M. Banghart, and E. Marder, When complex neuronal structures may not matter, vol.6, p.23508, 2017.

A. G. Otopalik, M. L. Goeritz, A. C. Sutton, T. Brookings, C. Guerini et al., Sloppy morphological tuning in identified neurons of the crustacean stomatogastric ganglion, vol.6, p.22352, 2017.

L. M. Palmer and G. J. Stuart, Site of action potential initiation in layer 5 pyramidal neurons, J Neurosci, vol.26, pp.1854-1863, 2006.

J. Platkiewicz and R. Brette, A threshold equation for action potential initiation, PLoS Comput Biol, vol.6, p.1000850, 2010.

L. Prensa and A. Parent, The nigrostriatal pathway in the rat: a single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments, J Neurosci, vol.21, pp.7247-7260, 2001.

M. Puopolo, E. Raviola, and B. P. Bean, Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons, J Neurosci, vol.27, pp.645-656, 2007.

I. Putzier, P. H. Kullmann, J. P. Horn, and E. S. Levitan, Dopamine neuron responses depend exponentially on pacemaker interval, J Neurophysiol, vol.101, pp.926-933, 2009.

M. N. Rasband, The axon initial segment and the maintenance of neuronal polarity, Nat Rev Neurosci, vol.11, pp.552-562, 2010.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. Dezonia, A. E. Walter et al., ImageJ2: ImageJ for the next generation of scientific image data, BMC Bioinformatics, vol.18, p.529, 2017.

B. Sakmann and E. Neher, Single channel recordings, 1995.

J. H. Schild, S. Khushalani, J. W. Clark, M. C. Andresen, D. L. Kunze et al., An ionic current model for neurons in the rat medial nucleus tractus solitarii receiving sensory afferent input, J Physiol, vol.469, pp.341-363, 1993.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an opensource platform for biological-image analysis, Nat Methods, vol.9, pp.676-682, 2012.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH image to ImageJ: 25 years of image analysis, Nat Methods, vol.9, pp.671-675, 2012.

R. S. Scott, C. Henneberger, R. Padmashri, S. Anders, T. P. Jensen et al., Neuronal adaptation involves rapid expansion of the action potential initiation site, Nat Commun, vol.5, p.3817, 2014.

V. Seutin and D. Engel, Differences in Na ? conductance density and Na ? channel functional properties between dopamine and GABA neurons of the rat substantia nigra, J Neurophysiol, vol.103, pp.3099-3114, 2010.

J. M. Tepper, M. Damlama, and F. Trent, Postnatal changes in the distribution and morphology of rat substantia nigra dopaminergic neurons, Neuroscience, vol.60, pp.469-477, 1994.

C. Thome, T. Kelly, A. Yanez, C. Schultz, M. Engelhardt et al., Axon-carrying dendrites convey privileged synaptic input in hippocampal neurons, Neuron, vol.83, pp.1418-1430, 2014.

K. R. Tucker, M. A. Huertas, J. P. Horn, C. C. Canavier, and E. S. Levitan, Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act, J Neurosci, vol.32, pp.14519-14531, 2012.

A. Van-ooyen, J. Duijnhouwer, M. W. Remme, and J. Van-pelt, The effect of dendritic topology on firing patterns in model neurons, Network, vol.13, pp.311-325, 2002.

A. Van-wart, J. S. Trimmer, and G. Matthews, Polarized distribution of ion channels within microdomains of the axon initial segment, J Comp Neurol, vol.500, pp.339-352, 2007.

M. Vandecasteele, J. Glowinski, J. M. Deniau, and L. Venance, Chemical transmission between dopaminergic neuron pairs, Proc Natl Acad Sci U S A, vol.105, pp.4904-4909, 2008.

P. Vetter, A. Roth, and M. Häusser, Propagation of action potentials in dendrites depends on dendritic morphology, J Neurophysiol, vol.85, pp.926-937, 2001.

H. Washio, K. Takigachi-hayashi, and S. Konishi, Early postnatal development of substantia nigra neurons in rat midbrain slices: hyperpolarization-activated inward current and dopamine-activated current, Neurosci Res, vol.34, pp.91-101, 1999.

C. M. Weaver and S. L. Wearne, Neuronal firing sensitivity to morphologic and active membrane parameters, PLoS Comput Biol, vol.4, p.11, 2008.

W. Wefelmeyer, D. Cattaert, and J. Burrone, Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output, Proc Natl Acad Sci U S A, vol.112, pp.9757-9762, 2015.

C. J. Wilson and J. C. Callaway, Coupled oscillator model of the dopaminergic neuron of the substantia nigra, J Neurophysiol, vol.83, pp.3084-3100, 2000.

A. G. Yee, B. Forbes, P. Y. Cheung, A. Martini, M. H. Burrell et al., Action potential and calcium dependence of tonic somatodendritic dopamine release in the Substantia Nigra pars compacta, J Neurochem, vol.148, pp.462-479, 2019.

D. Zhou, S. Lambert, P. L. Malen, S. Carpenter, L. M. Boland et al., AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing, J Cell Biol, vol.143, pp.1295-1304, 1998.