Incorporating phylogeography for modelling the distribution of the carob tree (Ceratonia siliqua, Leguminosae) in future climate change
Alex Baumel, Eleonora Potenza, Valentine Frelon, Juan Viruel, Gonzalo Nieto-Feliner, Magda Bou Dagher Kharrat, Lahcen Ouahmane, Hervé Sanguin, Stefano La Malfa, Mario Diguardo, et al.

To cite this version:
Alex Baumel, Eleonora Potenza, Valentine Frelon, Juan Viruel, Gonzalo Nieto-Feliner, et al.. Incorporating phylogeography for modelling the distribution of the carob tree (Ceratonia siliqua, Leguminosae) in future climate change. Genetics to the rescue: Managing forests sustainably in a changing world. GENTREE final conference, Jan 2020, Avignon, France. hal-02460403

HAL Id: hal-02460403
https://hal-amu.archives-ouvertes.fr/hal-02460403
Submitted on 30 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Incorporating phylogeography for modelling the distribution of the carob tree (Ceratonia siliqua, Leguminosae) in future climate change.

The carob is an evergreen termophilous fruit tree widely harvested throughout the Mediterranean for food and forage since antiquity. Currently, the carob is found in cultivation in orchards or in association with other crops, and it has expanded towards industrial, agricultural and soil restoration purposes. Wild populations are found in shrublands, forests as well as rocky outcrops and temporary river banks.

Carob phylogeography from Viruel et al. in press *

Two distinctive lineages diverged after a strong historical bottleneck, which subsequently split in four genetic clusters across the Mediterranean (SM, South Morocco; SS, South Spain; CM, Central Mediterranean; EM, East Mediterranean). Admixture is frequent due to human dissemination, such as in the North Moroccan populations (NM) which show assymmetric introgression between Eastern and Western genetic clusters.

New forecasting done with Maxent in respect to phylogeography and averaging results of 3 GCMs for RCP 4.5

A range contraction in the Mediterranean is predicted for carob tree due to climate change. Overlap analysis of climatic niches as well as Maxent modelling indicate that incorporating phylogeography may improve carob distribution modelling and forecasting. In contrast with forecast done at the species level, the analyses done at the genetic groups level support SM, and EM as the most likely persistent areas whereas the most affected would be SS.

Pessimistic forecasts?
What happens if the climate niche is divided according to phylogeographic structure?

Analysis of the overlap between current and future (2070) climatic envelopes

Data for the future were obtained by averaging the result of 3 GCM models (CNRM-CM5, HadGEM2-ES, CCSM4). Green, orange and red points correspond to the current period and to the RCP scenarios 4.5 and 8.5 respectively. A principal component analysis was done and used for a between class analysis (BCA) with the climatic change scenarios as factor. The first axis (BCA_1) corresponding to temperature is the most correlated to climate change forecasting.

Box plots of the distribution on BCA_1 axis of the five genetic clusters

759 points, 6 climatic variables, linear, quadratic and interaction features

Selected climatic variables (Worldclim DB):
- Annp: Mean annual temperature
- Maxtemp: Maximum temperature warmest month
- Minncm: Minimum temperature coldest month
- Prec: Precipitation seasonality
- Mean temperature of wettest quarter
- Seasonality:

Red : probability of presence 0.8-1
Grey: probability of presence 0.25-1
Green points: carob occurrences