H. Dolk, M. Loane, and E. Garne, The prevalence of congenital anomalies in Europe, Adv. Exp. Med. Biol, vol.686, pp.349-364, 2010.

S. M. Gilboa, J. L. Salemi, W. N. Nembhard, D. E. Fixler, and A. Correa, Mortality resulting from congenital heart disease among children and adults in the United States, Circulation, vol.122, pp.2254-2263, 1999.

M. D. Combs and K. E. Yutzey, Heart valve development: regulatory networks in development and disease, Circ. Res, vol.105, pp.408-421, 2009.

V. T. Nkomo, Burden of valvular heart diseases: a population-based study, Lancet, vol.368, pp.1005-1011, 2006.

V. L. Roger, Heart disease and stroke statistics, American Heart Association. Circulation, vol.125, pp.2-220, 2012.

R. A. Levine, Mitral valve disease--morphology and mechanisms, Nat. Rev. Cardiol, vol.12, pp.689-710, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01830969

F. Kyndt, Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy, Circulation, vol.115, pp.40-49, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00172816

C. Dina, Genetic association analyses highlight biological pathways underlying mitral valve prolapse, Nat. Genet, vol.47, pp.1206-1211, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01191656

R. Durst, Mutations in DCHS1 cause mitral valve prolapse, Nature, vol.525, pp.109-113, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01830584

F. N. Delling and R. S. Vasan, Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics, and molecular basis, Circulation, vol.129, pp.2158-2170, 2014.

R. B. Hinton and K. E. Yutzey, Heart valve structure and function in development and disease, Annu. Rev. Physiol, vol.73, pp.29-46, 2011.

A. M. Misfeldt, Endocardial cells are a distinct endothelial lineage derived from Flk1 + multipotent cardiovascular progenitors, Dev. Biol, vol.333, pp.78-89, 2009.

Y. Ishii, J. Langberg, K. Rosborough, and T. Mikawa, Endothelial cell lineages of the heart, Cell Tissue Res, vol.335, pp.67-73, 2009.

Y. Sugi and R. R. Markwald, Early endocardial formation originates from precardiac mesoderm as revealed by QH-1 antibody staining. Ital, J. Anat. Embryol, vol.100, issue.1, pp.263-272, 1995.

L. Cohen-gould and T. Mikawa, The fate diversity of mesodermal cells within the heart field during chicken early embryogenesis, Dev. Biol, vol.177, pp.265-273, 1996.

I. Lyons, Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5, Genes Dev, vol.9, pp.1654-1666, 1995.

M. P. Verzi, D. J. Mcculley, S. De-val, E. Dodou, and B. L. Black, The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field, Dev. Biol, vol.287, pp.134-145, 2005.

C. L. Cai, Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart, Dev. Cell, vol.5, pp.877-889, 2003.

M. Milgrom-hoffman, The heart endocardium is derived from vascular endothelial progenitors, Development, vol.138, pp.4777-4787, 2011.

M. Pucéat, Embryological origin of the endocardium and derived valve progenitor cells: from developmental biology to stem cell-based valve repair, BBA Mol. Cell Res, vol.1833, pp.917-922, 2013.

C. M. Ng, TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome, J. Clin. Invest, vol.114, pp.1586-1592, 2004.

P. Van-vliet, S. M. Wu, S. Zaffran, and M. Puceat, Early cardiac development: a view from stem cells to embryos, Cardiovasc. Res, vol.96, pp.352-362, 2012.

G. Blin, A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates, J. Clin. Invest, vol.120, pp.1125-1139, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00451770

C. Lopez-sanchez, Negative Fgf8-Bmp2 feed-back is regulated by miR-130 during early cardiac specification, Dev. Biol, vol.406, pp.63-73, 2015.

K. Kurohara, Essential roles of Meltrin beta (ADAM19) in heart development, Dev. Biol, vol.267, pp.14-28, 2004.

H. M. Zhou, Essential role for ADAM19 in cardiovascular morphogenesis, Mol. Cell. Biol, vol.24, pp.96-104, 2004.

N. Rath, Z. Wang, M. M. Lu, and E. E. Morrisey, LMCD1/Dyxin is a novel transcriptional cofactor that restricts GATA6 function by inhibiting DNA binding, Mol. Cell. Biol, vol.25, pp.8864-8873, 2005.

J. Rivera-feliciano, Development of heart valves requires Gata4 expression in endothelial-derived cells, Development, vol.133, pp.3607-3618, 2006.

B. Van-handel, Scl represses cardiomyogenesis in prospective hemogenic endothelium and endocardium, Cell, vol.150, pp.590-605, 2012.

F. Schlotter, Spatiotemporal multi-omics mapping generates a molecular atlas of the aortic valve and reveals networks driving disease, Circulation, vol.138, pp.377-393, 2018.

L. A. Timmerman, Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation, Genes Dev, vol.18, pp.99-115, 2004.

L. Luna-zurita, Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation, J. Clin. Invest, vol.120, pp.3493-3507, 2010.

J. Wylie-sears, E. Aikawa, R. A. Levine, J. H. Yang, and J. Bischoff, Mitral valve endothelial cells with osteogenic differentiation potential, Arterioscler. Thromb. Vasc. Biol, vol.31, pp.598-607, 2011.

C. M. Alfieri, J. Cheek, S. Chakraborty, and K. E. Yutzey, Wnt signaling in heart valve development and osteogenic gene induction, Dev. Biol, vol.338, pp.127-135, 2010.

L. M. Goddard, Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis, Dev. Cell, vol.43, p.275, 2017.

R. B. Runyan and R. R. Markwald, Invasion of mesenchyme into threedimensional collagen gels: a regional and temporal analysis of interaction in embryonic heart tissue, Dev. Biol, vol.95, pp.108-114, 1983.

F. Pujol, Dachsous1-Fat4 signaling controls endothelial cell polarization during lymphatic valve morphogenesis-brief report, Arterioscler. Thromb. Vasc. Biol, vol.37, pp.1732-1735, 2017.

K. A. Toomer, A role for primary cilia in aortic valve development and disease, Dev. Dyn, vol.246, pp.625-634, 2017.

L. Andres-delgado and N. Mercader, Interplay between cardiac function and heart development, Biochim. Biophys. Acta, vol.1863, pp.1707-1716, 2016.

J. Liu, Sonic hedgehog signaling directly targets Hyaluronic Acid Synthase 2, an essential regulator of phalangeal joint patterning, Dev. Biol, vol.375, pp.160-171, 2013.

N. Nagy, Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix, Development, vol.143, pp.264-275, 2016.

R. Rohatgi, L. Milenkovic, and M. P. Scott, Patched1 regulates hedgehog signaling at the primary cilium, Science, vol.317, pp.372-376, 2007.

G. V. Pusapati, CRISPR Screens Uncover Genes that Regulate Target Cell Sensitivity to the Morphogen Sonic Hedgehog, Dev. Cell, vol.44, p.271, 2018.

T. Horsthuis, Gene expression profiling of the forming atrioventricular node using a novel tbx3-based node-specific transgenic reporter, Circ. Res, vol.105, pp.61-69, 2009.

P. Vrljicak, Genomic analysis distinguishes phases of early development of the mouse atrio-ventricular canal, Physiol. Genom, vol.40, pp.150-157, 2010.

H. Kokubo, S. Tomita-miyagawa, Y. Hamada, and Y. Saga, Hesr1 and Hesr2 regulate atrioventricular boundary formation in the developing heart through the repression of Tbx2, Development, vol.134, pp.747-755, 2007.

L. M. Pavone, Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT, Biochem. Biophys. Res. Commun, vol.377, pp.419-422, 2008.

A. Schweickert, Left-asymmetric expression of Galanin in the linear heart tube of the mouse embryo is independent of the nodal co-receptor gene cryptic, Dev. Dyn, vol.237, pp.3557-3564, 2008.

M. S. Rana, Tbx1 coordinates addition of posterior second heart field progenitor cells to the arterial and venous poles of the heart, Circ. Res, vol.115, pp.790-799, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01112667

S. Kitajima, S. Miyagawa-tomita, T. Inoue, J. Kanno, and Y. Saga, Mesp1-nonexpressing cells contribute to the ventricular cardiac conduction system, Dev. Dyn, vol.235, pp.395-402, 2006.

Y. Watanabe, Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries, Circ. Res, vol.106, pp.495-503, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02130295

R. Ilagan, Fgf8 is required for anterior heart field development, Development, vol.133, pp.2435-2445, 2006.

P. Sarkar, S. M. Randall, D. C. Muddiman, and B. M. Rao, Targeted proteomics of the secretory pathway reveals the secretome of mouse embryonic fibroblasts and human embryonic stem cells, Mol. Cell. Proteom, vol.11, pp.1829-1839, 2012.

Y. Sugi and R. R. Markwald, Endodermal growth factors promote endocardial precursor cell formation from precardiac mesoderm, Dev. Biol, vol.263, pp.35-49, 2003.

L. A. Dyer and M. L. Kirby, The role of secondary heart field in cardiac development, Dev. Biol, vol.336, pp.137-144, 2009.

K. Niessen, Slug is a direct Notch target required for initiation of cardiac cushion cellularization, J. Cell. Biol, vol.182, pp.315-325, 2008.

L. Ma, M. F. Lu, R. J. Schwartz, and J. F. Martin, Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning, Development, vol.132, pp.5601-5611, 2005.

S. B. Kim, Sevre mitral regurgitation in a young femal with pansinusitis and brochiectasis, Respir. Med. CME, vol.1, pp.185-187, 2008.

A. Lumiaho, Mitral valve prolapse and mitral regurgitation are common in patients with polycystic kidney disease type 1, Am. J. Kidney Dis, vol.38, pp.1208-1216, 2001.

L. M. Silva, Inhibition of Hedgehog signaling suppresses proliferation and microcyst formation of human Autosomal Dominant Polycystic Kidney Disease cells, Sci. Rep, vol.8, p.4985, 2018.

G. Wheway, L. Nazlamova, and J. T. Hancock, Signaling through the Primary Cilium, Front. Cell. Dev. Biol, vol.6, 2018.

A. D. Egorova, Lack of primary cilia primes shear-induced endothelialto-mesenchymal transition, Circ. Res, vol.108, pp.1093-1101, 2011.

M. Ema, S. Takahashi, and J. Rossant, Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors, Blood, vol.107, pp.111-117, 2006.

G. A. Bien-willner, P. Stankiewicz, and J. R. Lupski, SOX9cre1, a cis-acting regulatory element located 1.1 Mb upstream of SOX9, mediates its enhancement through the SHH pathway, Hum. Mol. Genet, vol.16, pp.1143-1156, 2007.

T. Neri, E. Hiriart, P. Van-vliet, and M. Puceat, A human cell model of valvulogenesis, Nat. Protoc. Exch, 2019.

C. Cheadle, M. P. Vawter, W. J. Freed, and K. G. Becker, Analysis of microarray data using Z score transformation, J. Mol. Diagn, vol.5, pp.73-81, 2003.

T. R. Magalhaes, J. Palmer, P. Tomancak, and K. S. Pollard, Transcriptional control in embryonic Drosophila midline guidance assessed through a whole genome approach, BMC Neurosci, vol.8, p.59, 2007.

K. Inai, R. A. Norris, S. Hoffman, R. R. Markwald, and Y. Sugi, BMP-2 induces cell migration and periostin expression during atrioventricular valvulogenesis, Dev. Biol, vol.315, pp.383-396, 2008.

E. Hiriart, P. Van-vliet, R. J. Dirschinger, and S. M. Evans, & Puceat, M Cell labeling and injection in developing embryonic mouse hearts, J Vis Exp, vol.86, pp.1-7, 2014.