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Abstract 21 

Artificial reefs (ARs) are deployed worldwide as they are expected to support fisheries management. 22 

While the underlying mechanisms remain widely debated, production was recently determined as 23 

the most probable cause of increases in fish biomass. Changes in fish biomass in a temperate AR 24 

system were investigated from December 2008 to November 2015 by considering seven distinct 25 

functional groups, and isotopic functional indices were used to identify how these changes may have 26 

affected organic matter (OM) fluxes. Contrasting patterns of change were observed between 27 

functional trophic groups, highlighting that combining the biomass of all species present in a 28 

community is inappropriate for assessing AR-induced effects. Benthic sedentary species 29 

predominated (>75% of the total biomass) through massive production, with a 68-fold increase in 30 

mean biomass over the study period. Mobile species tended to vary seasonally, suggesting only a 31 

slight influence of AR. Zooplanktivores biomass decreased over the 6-year period, as a possible result 32 

of changes in environmental conditions. Isotopic indices helped to reveal both the community 33 

maturation and the importance of local OM sources not only in supporting fish biomass production 34 

but also in attracting pelagic species. Our results corroborate that production and attraction are two 35 

extremes of a range of contrasting patterns and highlight the importance of considering the specific 36 

responses of functional components of fish communities to accurately describe changes in AR 37 

functioning. Functional attributes such as trophic traits, habitat use and dispersal abilities must not 38 

be overlooked as they modulate fish species responses to the deployment of man-made rocky 39 

substrates. 40 

 41 

Keywords: artificial reefs; Mediterranean Sea; fish biomass production; isotopic functional indices 42 

 43 
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1. Introduction 45 

Biodiversity loss is one of the critical consequences of human-induced impacts on ecosystems 46 

(Ceballos et al., 2015). A growing body of evidence has shown that overexploitation of resources and 47 

habitat degradation are the major sources of disturbance in coastal marine regions (Halpern et al., 48 

2008). While the effects of fishing pressure on the structure and functioning of marine ecosystems 49 

have been mostly assessed using biomass-derived indicators - as biomass can be easily estimated 50 

from surveys or fisheries statistics (Coll et al., 2016) - recent theoretical developments demonstrate 51 

the effectiveness of functional approaches in providing additional information for better detecting, 52 

describing and explaining the overall impact of human pressures on marine environments (Mouillot 53 

et al., 2013).  54 

Functional ecology uses functional traits, i.e. any measurable biological characteristic that influences 55 

species performance and survival: by considering functional traits in a quantitative way while taking 56 

into account species biomass, Functional indices provide a meaningful framework to quantify how 57 

disturbance affects ecosystems functioning (Mouillot et al., 2013) or to predict changes in ecosystem 58 

processes (e.g. biogeochemical cycling; Naeem et al., 2012).Among the large range of morphological, 59 

phenological and behavioral traits, trophic traits are the most intuitive and efficient discrete 60 

attributes to (i) group species (e. g. Micheli and Halpern, 2005), (ii) capture and summarize 61 

morphological, behavioral and interspecific interactions (Rigolet et al., 2015; Scharf et al., 2000; 62 

Winemiller et al., 2015), (iii) reveal changes in food webs, trophic cascades, community structure and 63 

ecosystem services (Coleman et al., 2015; Mouillot et al., 2013) and (iv) understand species-specific 64 

responses and resilience to environmental heterogeneity (Coleman et al., 2015; Micheli and Halpern, 65 

2005; Morris et al., 2018; Suzuki et al., 2018). Trophic diversity is therefore frequently used as a 66 

proxy for functional diversity. 67 

Stable isotopes are particularly suitable for defining trophic traits: carbon isotopic ratio (δ13C 68 

hereafter) is classically used as a proxy for organic matter sources fueling food webs, while nitrogen 69 

isotopic ratio (δ15N) is a relevant proxy for trophic level. Combining these two tracers was 70 
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demonstrated to be an efficient representation of species’ ecological niche sensu Hutchinson, as the 71 

“δ-space” (δ13C and δ15N values) provide us insight on both resources type (the bionomic axis) and 72 

species habitat (the scenopoetic axis), information commonly used to formalize the niche concept 73 

(Bearhop et al., 2004; Jabot et al., 2017; Newsome et al., 2007). Isotopic indices, derived from the 74 

dispersion and distribution of observations in the δ-space (Brind’Amour and Dubois, 2013), were thus 75 

developed to describe communities’ trophic structure, to quantify its total diversity or to estimate 76 

trophic diversity (Layman et al., 2007). Despite the importance of taking into account biomass (or at 77 

least estimation of abundance; Villéger et al., 2008) for good sets of metrics, and while biomass 78 

weighted-functional indices are now commonly used in the literature, isotopic indices rarely 79 

considered species-specific biomass in their calculation (Cucherousset and Villéger, 2015; Rigolet et 80 

al., 2015). Such a limitation, except the faulty assumption that all species encountered within a 81 

community have equal importance (Rigolet et al., 2015), may be related to the difficulty in collecting 82 

species biomass and functional data simultaneously. This led researchers, in most cases, to ascribe 83 

monitored biomass to species traits retrieved from global data aggregators such as FishBase (e. g. 84 

Micheli and Halpern, 2005; Suzuki et al., 2018).  85 

 86 

Artificial reefs (hereafter AR) have been used for centuries to manage coastal zones, to support 87 

small-scale fisheries and restore degraded habitat (Becker et al., 2017; Claudet and Pelletier, 2004; 88 

Neves Santos and Costa Monteiro, 1998). These structures are now a popular management tool, as 89 

both professional and recreational fishermen seem satisfied with the increase in fish biomass and 90 

catches at ARs (Tessier et al., 2015a). The origin of increasing biomass has been largely debated in 91 

the literature and two main explanations have been proposed: while the first suggests that fish are 92 

attracted from natural to artificial reefs, the second, the production hypothesis, states that fish 93 

biomass increases are related to local production (e. g. Smith et al., 2016). Ecological mechanisms 94 

behind these changes have been investigated in two distinct ways: some have scrutinized community 95 

functioning (e.g. trophic relationships) without considering community composition nor long-term 96 
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changes (e. g. Relini et al., 2002; Scarcella et al., 2011) while others have measured changes in 97 

biomass - sometimes in the same ARs -without thorough functional interpretation (Brickhill et al., 98 

2005; Relini et al., 1994). Investigating the relationships between organic matter fluxes and trophic 99 

organization of fish communities, in addition to classical biomass measurement, may be a promising 100 

scientific avenue to solve the old attraction/production controversy, notably by confirming that fish 101 

and invertebrates communities of AR belong to the same food web (Powers et al., 2003; Brickhill et 102 

al., 2005). While some studies have revealed that ARs favor biomass production (Champion et al., 103 

2015; Smith et al., 2016), most focused on single-time point surveys and overlooked long-term or 104 

seasonal changes in fish communities; at best, 3 years of monitoring were investigated (Becker et al., 105 

2017). The massive amount of work required to monitor community composition and trophic 106 

patterns may explain why such studies are rare.  107 

From October 2007 to July 2008, more than 400 ARs were deployed in a 2km² area in the Bay of 108 

Marseilles. This is the largest deployment of ARs in the Mediterranean Sea (Tessier et al., 2015b). 109 

Reefs were constituted of metal frames, concrete piles and breeze blocks. Briefly, six types of 110 

purpose-designed modules of different shapes and volumes were deployed and arranged in triangle-111 

shaped structures called “villages” at depth ranging from 25 to 35 meters(see Charbonnel et al., 2011 112 

for a thorough description). After installation, both recreational and commercial fisheries were 113 

forbidden in the zone. This deployment aimed to support artisanal fisheries and to restore adjacent 114 

rocky reefs by fish biomass exportation, while being a great opportunity for researchers to examine 115 

with special attention the “attraction versus production” hypotheses.  116 

Here, based on our previous works carried out on this AR (see Table S1) and new analyses, we aimed 117 

to better characterize its functioning and how it has evolved over the last years. To address this, we 118 

followed a three-step procedure which builds on our knowledge of this system. First, a qualitative 119 

investigation of system functioning was performed through measuring isotopic ratios all components 120 

of the system. In the Bay of Marseilles, pelagic primary production dominated in both suspended and 121 

sedimentary pools of organic matter (Cresson et al., 2012). Pelagic subsidies fueled the entire food 122 
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web, from suspension feeders to fish (Cresson et al., 2014a, 2016). Using stomach contents, we 123 

corroborated the key role of AR as feeding areas: most important fish prey were invertebrate species 124 

of the AR community. Secondly, the combination of these two sources of information, i.e. stable 125 

isotopes and stomach contents, allowed determining 7 fish functional groups that share species with 126 

similar functioning (Cresson et al., 2014a, 2014b); based on two seasons only, temporal variability 127 

was not included however. To fill this gap, and thanks to the 6-year period of sampling, the temporal 128 

modifications of the whole AR fish community were investigated, but also changes in each functional 129 

trophic group. Thirdly, using Isotopic Functional Indices (IFI), calculated from both isotopic ratios and 130 

individual biomass, we quantified how fish community maturation has affected the trophic structure 131 

of the AR and its functioning over time, presumably as the coexistence of attraction and production 132 

on the same maturing artificial reef system, mechanisms and processes being mainly related to fish 133 

species life traits and strategies. IFI are notably expected to provide a synthetic vision of the 134 

multifaceted changes of community composition as an ARs system matures, and to highlight the 135 

coexistence of attraction and production on the same maturing artificial reef system, depending on 136 

species habits. 137 

 138 

2. Material and methods 139 

2.1. Underwater surveys 140 

Among the six AR types deployed in the bay of Marseilles, our study focused on the three largest 141 

(2 - 6 m high, 75 - 187m3), i.e. metal basket, fakir basket and quarry rocks (Charbonnel et al., 2011). 142 

These architectural types were selected because their species richness was the highest (GIS 143 

Posidonie, unpubl. data). Fish species abundance and biomass on ARs were assessed seasonally from 144 

December 2008 to November 2015 on each AR by underwater visual surveys performed on six 145 

individual metal basket, six fakir basket and 12 quarry rocks individual modules, following the 146 

methodology developed by Harmelin-Vivien et al (1985).  147 
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On each AR, two divers worked simultaneously for scientific and safety reasons. The first diver 148 

went directly to the bottom to identify mobile and fast-moving species, mostly predators that may 149 

be easily disturbed and missed. Before reaching the bottom, the second diver stayed at the surface 150 

to count pelagic species. Then, both divers counted benthic species around the AR, each with their 151 

own species list to avoid double-counting. Fish abundance was determined and individual size was 152 

estimated to the nearest 2 cm. All underwater surveys were performed by the same team, to 153 

preclude observer-induced bias. When performed by experienced scientific divers, as here, this 154 

method allows assessing about more than half of the fish assemblage diversity, including most large 155 

demersal and benthic species (Harmelin-Vivien et al., 1985). This method is less efficient for small 156 

cryptic species, such as blenniids and gobids (Caldwell et al., 2016), and, as they are poorly sampled 157 

by methods used for isotopic analyses, these species were not considered in the present study. 158 

For consistency with the temporal resolution of stable isotope data (see below), months from 159 

November to February were referred as “winter” and from May to August as “summer”.  160 

 161 

2.2. Fish sampling and stable isotope analysis. 162 

Carbon and nitrogen isotopic ratios were used to provide a qualitative picture of the trophic 163 

functioning of AR fish assemblage. Samples for stable isotope analyses were collected in summer and 164 

winter 2010. A seasonal once-only sampling strategy was sufficient to establish a representative 165 

picture of the fish community functional structure, as (i) changes in stable isotope composition were 166 

of negligible importance over a 6-year period, (ii) isotopic variability does not alter major patterns of 167 

food-web structure derived from isotopic indices (Jabot et al., 2017) and (iii) species isotopic ratios 168 

did not vary over the studied period, an assumption confirmed by isotopic values measured for the 169 

same species in the Bay of Marseilles in 2012 and 2015 (Ourgaud, 2015; Belloni et al., 2019). Based 170 

on this similarity, isotopic ratios measured for salema Sarpa salpa in the Bay of Marseilles (Ourgaud, 171 

2015) were added to our dataset, as underwater surveys revealed the relative sporadic importance 172 

of this species. Consequences of this assumption are discussed in Appendix 1. By limiting the effect of 173 
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repeated lethal sampling on fish community abundance and diversity, a crucial question in a no-take 174 

area, this approach falls within a context of ethical research practices (Costello et al., 2016).  175 

 176 

Sampling was consistent with classical methodology used for stable isotope analysis (see Cresson 177 

et al., 2014b). Dorsal muscle samples of 325 fish individuals were dissected, stored frozen, freeze 178 

dried and ground to a fine powder (Table S2). Powder was then analyzed with a flow mass 179 

spectrometer (Delta V advantage, Thermo Scientific). Stable isotope ratios were expressed following 180 

the classical δ notation: 181 

𝛿𝑋 = (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) × 103     (1) 182 

where 𝑋 is 13C or 15N and 𝑅 the isotopic ratios 13C/12C or 15N/14N, respectively. By applying a 183 

hierarchical cluster analysis based on the Euclidean similarity coefficient and Ward’s algorithm 184 

calculated on the table encompassing stable isotope ratios and stomach contents obtained for each 185 

species, seven functional trophic groups were identified (see Cresson et al., 2014b). Pelagic piscivores 186 

included widely distributed demersal and pelagic species, that may prey on benthic or pelagic fish 187 

that mainly live in the water column, by as opposed to sedentary benthic piscivores such as Conger 188 

conger or Scorpaena scrofa that prey exclusively on benthic fish species and are generally gregarious. 189 

Clustering was consistent with the existing literature (e. g. Stergiou and Karpouzi, 2002; Karachle and 190 

Stergiou, 2017). Following Badalamenti et al (2000), trophic levels were based on individual’s δ15N 191 

values: 192 

𝑇𝐿𝑖 =
𝛿15𝑁𝑖−𝛿15𝑁𝑇𝐵

𝑇𝐸𝐹
+ 𝑇𝐿𝑇𝐵     (2) 193 

with TEF, the Trophic Enrichment Factor (i.e. the increase of δ15N at each trophic level), set to 3.4‰. 194 

Two trophic baselines (TB) were used: nanophytoplankton (δ15N = 1.77‰ Rau et al., 1990) for most 195 

species and a proxy of benthic primary production (δ15N = 3.91‰; Cresson et al. 2014) for sparids, as 196 

applied in previous study (Cresson et al., 2014a). Trophic level of the baselines (TLTB) was set to 1. 197 

 198 

2.3. Isotopic functional indices 199 
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Biomass-weighted metrics were calculated following the methodology and scripts developed by 200 

Cucherousset and Villéger (2015) and applied elsewhere (e. g. Chaalali et al., 2017; Rigolet et al., 201 

2015). This approach combined C and N isotopic ratios, as proxies of trophic functional diversity, and 202 

community composition, assessed by species biomass. Biomass, rather than abundance, was chosen 203 

to describe species assemblages (Villéger et al., 2008): by being directly related to metabolism and 204 

secondary production, biomass performs better than abundance to resume species importance, 205 

organic matter and energy fluxes within the community (Cucherousset and Villéger, 2015; Rigolet et 206 

al., 2015). Biomass of each species was calculated from the length-mass relationship: 207 

M=a.Lb       (3) 208 

where a and b are specific or allometric coefficients retrieved from the literature (Froese and Pauly, 209 

2017). Biomass was calculated for all species observed on the ARs, whether their isotopic ratios were 210 

measured or not. Seasonal relative biomasses-for species for which isotopic analysis were carried 211 

out- were then calculated as the ratio between each species’ biomass and the total fish biomass. 212 

Species sampled for isotopic ratios represented more than 95% of the total biomass of the 213 

community, with the exception of summer 2009 and winter 2015 when it was 91%. Species missing 214 

stable isotope ratios had minor influences on the trophic organization of fish assemblage on ARs and 215 

were: (i) pelagic vagrant species (e.g. Mola mola, Sparus aurata or Seriola dumerili) that occurred in 216 

the AR zone for a very short period, (ii) small species (e.g. Symphodus spp.) with a relative biomass 217 

close to 1% of the total biomass, and (iii) species observed once only (e.g. Muraena helena or 218 

Acantholabrus palloni). 219 

Average δ13C and trophic level of the community were calculated as the sum of biomass-220 

weighted δ13C and trophic levels for each species. Functional indices were computed on standardized 221 

values (Cucherousset and Villéger, 2015; Jabot et al., 2017) to limit the influence of one isotope on 222 

another, a well-known pitfall of isotopic metrics (Hoeinghaus and Zeug, 2008). Calculation details and 223 

a full description of each index can be found in litterature (Cucherousset and Villéger, 2015; Rigolet 224 

et al., 2015) and their main rationale is only recalled here: functional divergence indices (Isotopic 225 
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Divergence ‘IDiv’ and Isotopic Dispersion ‘IDis’) provide information about isotopic richness, i.e. how 226 

species diverge from the center of gravity of the community. High index values indicate most of the 227 

biomass is dependant on alternative food sources (Chaalali et al., 2017). Functional evenness indices 228 

(Isotopic Evenness ‘IEve’ and Isotopic Uniqueness ‘IUni’) describe the species distribution regularity 229 

within the isotopic space. High values indicate communities dominated by a few specialist species 230 

(Cucherousset and Villéger, 2015). 231 

 232 

2.4. Statistical analyses 233 

For each trophic group, temporal changes in biomass were first assessed by computing both 234 

trend and seasonality for each time-series (December 2008-November 2015). Seasonality was 235 

estimated by applying the average percentage method (Schwager and Etzkorn, 2017) using median 236 

values to alleviate potential biases related to extreme values (Spiegels and Stephens, 1999). Detailed 237 

calculations are in Appendix 2. Three analyses were performed (i) non-parametric Mann-Kendall 238 

(MK) statistical tests to assess the significance of each trend, (ii) Theil-Sen linear regressions to 239 

quantify changes in species’ biomass per unit time (Gilbert, 1987) and (iii) Mann-Whitney-Wilcoxon 240 

(MW) non-parametric tests to estimate possible differences between summer and winter periods. 241 

For each group, we also quantified whether trends were monotonically dependent on time by 242 

performing Spearman’s correlation permutation tests (999 permutations) with correction for 243 

multiple comparisons (Legendre and Legendre, 2012). The closer rs is to |1| the stronger the 244 

monotonic relationship (Table 2). This approach was applied on the whole community and to each 245 

functional group and species. To consider a potential influence of predominating species when 246 

estimating the total biomass of the seven functional groups, analyses were performed on observed 247 

and standardized biomasses. Standardization (between 0 and 1, 0 being the biomass minimum and 1 248 

the biomass maximum over the period December 2008 - November 2015) allowed to give equal 249 

weight to each of the species within a given functional group. For each functional group that included 250 

more than one species, a linear regression model was then applied, linear trends being represented 251 
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as solid lines. Isotopic (δ13C, δ15N) and trophic level differences between functional groups were 252 

estimated by means of ANOVA,including Tukey post-hoc tests. Inter-annual trends were summarized 253 

by a Principal Component Analysis (PCA) performed on the matrix gathering the functional indices, 254 

δ13C values, trophic levels and total biomass per trophic group. Analyses and figures were performed 255 

in R version 3.5.1 using the packages “car”, “FactoMineR”, “ggplot2”, “MASS” and “multcomp” (Fox 256 

and Weisberg, 2010; Hothorn et al., 2008; Lê et al., 2008; R Core Team, 2018; Venables and Ripley, 257 

2013; Wickham, 2009). 258 

 259 

3. Results 260 

3.1. Biomass composition of the community 261 

From December 2008 to November 2015, the fish assemblage was dominated by benthic species 262 

(herbivores, rocky- and soft-bottom mesocarnivores, macrocarnivores and benthic piscivores), that 263 

represented more than 75% of the total biomass (Fig. 1). Rocky-bottom mesocarnivores (e.g labrids 264 

and Diplodus spp.) were predominant and represented ~40% of the mean biomass, with seasonal 265 

values ranging between 20-60%. Benthic piscivores were the second most important group (~20% of 266 

the mean biomass) with high values related to large Conger conger individuals (Fig. S1). Low average 267 

biomass (~5%) was measured for sandy bottom mesocarnivores (almost entirely one species Mullus 268 

surmuletus) and for the herbivore Sarpa salpa (~3% of the mean biomass). Zooplanktivores 269 

dominated pelagic species and represented ~25% of the mean biomass, but with high temporal 270 

variability as their relative biomass ranged from 52% in winter 2009 to 3% in summer 2012. Pelagic 271 

piscivores represented about 3% of the mean biomass, although especially high values were 272 

observed in winter 2012 and 2014 (12 and 10%, respectively) because of the presence of mackerel 273 

Trachurus spp. schools and large (36-50 cm) Dicentrarchus labrax individuals. Species richness within 274 

each group remained constant during the studied period (Fig. S2) 275 

3.2. Isotopic composition of the community  276 
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Functional groups displayed significant differences (ANOVA, p<10-3) for the descriptors (δ13C, δ15N 277 

and trophic level) used (Table 1). For δ13C, the major difference was observed between 278 

zooplanktivores (-19.75±0.37‰) and other groups, with a 2.1‰ difference between minimal and 279 

maximal values when all species were considered, but only ~1‰ when zooplanktivores where 280 

excluded(Table 1). For δ15N and trophic level, zooplanktivores and herbivores had the lowest values 281 

(8.28±0.51‰ and 9.13±0.50‰ for δ15N, 2.59±0.30 and 2.53±0.10 for trophic level respectively) while 282 

pelagic piscivores clearly differed from all other groups (13.63±2.28‰ for δ15N, 4.49±0.67 for trophic 283 

level).  284 

3.3. Temporal and seasonal changes in biomass 285 

A general increase in biomass was detected from 2009 to 2015 (Fig. 2, Table S2) with an almost 286 

doubling (×1.5) of the total biomass. When considering all species together however, we found that 287 

this trend was not statistically significant (MK p-value=0.951; Table 2). In comparing functional 288 

groups, two patterns of changes were observed: a monotonous trend over the period 2009-2015 and 289 

a marked seasonality. Major and significant biomass increases were observed for benthic piscivores 290 

(Biomass × 68; Sen’s slope = 8.99, MK p-value = 0.01) and rocky-bottom mesocarnivores (Biomass × 291 

3; Sen’s slope = 6.16, MK p- value = 0.2). These increasing trends were induced by the presence of 292 

large individuals for C. conger and Scorpaena scrofa (Fig. S3, Table S3). Zooplanktivores displayed a 293 

monotonous but decreasing trend, as evidenced by the steepest negative slope (Sen’s slope = -12.43, 294 

MK p-value = 0.16). Changes in herbivores, pelagic piscivores and sandy-bottom mesocarnivores 295 

showed a strong seasonality with a high pelagic piscivore biomass in winter, but in summer for 296 

herbivores and sandy-bottom mesocarnivores. While some species dominated the functional groups, 297 

comparable results were obtained after standardization. Trends and seasonal patterns were similar 298 

at both the species and functional group levels (Fig. S2, Table S3) 299 

3.4. Interannual variability in the community functional structure 300 
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With two periods identified from winter 2009 to winter 2011 and from summer 2011 onwards, years 301 

and both winter and summer seasons were well-separated on the PCA-biplot (Fig. 3), highlighting the 302 

maturation of the fish community, functional changes over time, as well as a seasonal signal. The first 303 

principal component (PC1, 37% of the explained variability) revealed the community maturation, 304 

with increasing biomass in benthic species and decreasing biomass in pelagic species. As a result of 305 

the decrease in pelagic species, a reduction in isotopic divergence and uniqueness, and an increase in 306 

the mean δ13C of the community were observed. The PC2 (20% of the total variability) detected 307 

seasonality, this component being positively correlated with the community in summer, but 308 

negatively in winter (except for winter 2015). This difference was mainly induced by the seasonal 309 

occupation of artificial reefs by species with distinct trophic level (TL): herbivores with low TL in 310 

summer and pelagic piscivores with high TL in winter. Herbivores in the summer community led to 311 

high evenness values mainly because of the isotopic peculiarity of S. salpa. The unexpected position 312 

of the community in winter 2015 was explained by a high value for isotopic evenness, as all groups 313 

were present with slightly balanced biomass (Fig. 4). Examination of the second eigenvector 314 

indicated that trophic level was highly negatively related to the PC2 (Fig. 3). While the position of 315 

winter samples on the PCA-biplot was explained by high biomass of pelagic species, summer samples 316 

were related to the presence of herbivores that induced low trophic level and high evenness values 317 

(Figure S2). 318 

4. Discussion  319 

Over the last few decades, studies have largely focused on determining changes in fish biomass on 320 

ARs, as fish biomass increases through production are crucial for ascertaining sustainable support to 321 

fisheries (Powers et al., 2003). However, depending on species’ life history strategies, contrasted 322 

ecological responses to artificial habitats have emerged: benthic and sedentary species were largely 323 

positively affected by AR deployment while no definite effect was observed for pelagic and mobile 324 

species. These opposite patterns are typical in natural reefs but were seldom noticed in ARs (Morris 325 

et al., 2018). They may explain and contribute to the attraction/production controversy: strong and 326 
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contrasting responses of fish to environmental heterogeneity were observed at the functional group-327 

level, which in turn generated noisy and non-significant trends in biomass at the community level 328 

(Suzuki et al., 2018). Applying a functional approach and considering species on the basis of their 329 

functional attributes therefore appears essential to adequately assess the ability of ARs to enhance 330 

fish biomass. 331 

 332 

4.1. A major effect of ARs on benthic fish species production 333 

Predominance of benthic fish species in the AR community is consistent with most surveys 334 

carried out on fish communities in natural and artificial reefs, in the Mediterranean Sea and 335 

worldwide (Harmelin, 1987; Powers et al., 2003; Simon et al., 2011). Classically, these species show a 336 

marked affinity for reefs, spending most of their life cycle on ARs and/or consuming food resources 337 

there (Powers et al., 2003; Smith et al., 2016). The monotonous increasing trends as well as the 338 

observation of larger individuals are also in line with actual biomass production linked to both an 339 

increase in food resources and low fishing mortality. The ARs deployed in Marseilles were 340 

intentionally designed to be complex habitats that provide shelter for these fish species and their 341 

prey (Charbonnel et al., 2011). Increased accessibility to food resources, corroborated by the 342 

presence in fish stomach contents of preys inhabiting AR (Cresson et al., 2014b), may enhance fish 343 

growth rates (Scarcella et al., 2011). Fishing bans may also explain the occurrence of large benthic 344 

piscivores, macro- and mesocarnivores individuals, usually prime targets of fisheries (Astruch et al., 345 

2018; Leleu et al., 2014). Important benthic species’ biomasses and large individuals support that ARs 346 

within marine protected areas are efficient in promoting biomass production and in spilling-over 347 

larvae, juveniles and adults. This leads to the restoration of adjacent natural reefs and/or support for 348 

fisheries (Harmelin-Vivien et al., 2008). 349 

4.2. A limited effect of ARs on species with a marked seasonal cycle 350 
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The relative importance of soft- bottom mesocarnivores, herbivores and pelagic piscivores in the 351 

assemblage and their notable seasonal variability demonstrated that ARs had a limited effect on 352 

these species. Species included in these three functional groups only slightly contribute to the 353 

community (3-5% of the average total biomass), which is consistent with their limited affinity for 354 

rocky benthic artificial habitat. Large (up to 40cm in winter 2015; Table S2) M. surmuletus individuals 355 

were unexpected as it is close to the largest size reported in the Mediterranean Sea (45 cm; Louisy, 356 

2015). High S. salpa and M. surmuletus biomasses were observed on quarry rocks modules, i.e. rocks 357 

deployed on the bottom, flat substrates covered by algal turf that may be grazed by S. salpa and on 358 

which M. surmuletus may find its main prey, e.g. small crustaceans (Bautista-Vega et al., 2008). Sarpa 359 

salpa species may also benefit from the adjacent Posidonia oceanica seagrass meadow to perform 360 

seasonal displacements. A similar explanation can be given to pelagic piscivores that may use ARs to 361 

predate on fish during some stages of their seasonal cycle only (Cresson et al., 2014b; Leitão et al., 362 

2008). High biomass of D. labrax in winter resulted from reproductive aggregations commonly 363 

observed in coastal zones, independently of the presence of ARs. Finally, D. labrax and M. surmuletus 364 

may also benefit from fishing closures as they are also targeted by fisheries. While both trophic and 365 

protection effects of AR can be suggested for these species, their transient nature, with annual 366 

displacement between AR and neighboring natural habitats was not influenced by AR deployment 367 

and therefore restrain the influence of AR on biomass production. 368 

4.3. No effect of ARs on zooplanktivores 369 

The effect of ARs on zooplanktivores can be considered negligible as a low affinity for these stuctures 370 

was expected (Powers et al., 2003). Most of the modules worldwide are too small to significantly 371 

influence pelagic communities, whereas external forcing mainly impact zooplanktivores. This 372 

decrease in zooplanktivores was already observed elsewhere in the Bay of Marseille and in the Gulf 373 

of Lions (Brosset et al., 2016; Ourgaud et al., 2015). It was related to local drivers such as a decrease 374 

of the organic matter available through improved sewage treatment (Ourgaud et al., 2015) and 375 
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global climatic forcing that may have affected small pelagic species through bottom-up trophic 376 

cascades (Goberville et al., 2014). This hypothesis was strengthened by the recent local increase in 377 

zooplanktivore biomass (L. Le Diréach, pers. obs.). While zooplanktivores have biological and 378 

ecological peculiarities (e.g. transient nature, pelagic life, high sensitivity to environmental changes) 379 

that may preclude a strong effect of ARs on their biomass, large modules may be beneficial as they 380 

influence pelagic ecosystems (Champion et al., 2015). A positive effect can also be detected when 381 

zooplanktivores show a strong association with reefs, i.e. when environmental conditions are optimal 382 

to ensure efficient zooplankton supply (e.g reef’s exposure to prevailing ocean currents; Champion et 383 

al., 2015). 384 

4.4. A functional traits-based monitoring of ARs 385 

Our results provide useful insights to develop relevant indicators that assess the efficiency of ARs in 386 

enhancing biomass production and to better manage these ecosystems. Structural and functional 387 

community changes revealed that some functional groups displayed a clear increase in biomass in 388 

response to an AR deployment while others did not, especially when the factors controlling changes 389 

in biomass act at larger spatial or temporal scales. Differential responses of trophic groups to habitat 390 

heterogeneity is common in coral reef fish community (Morris et al., 2018; Suzuki et al., 2018). Is it 391 

thus relevant to assess the efficiency of ARs using biomass indicators based on the sum of all the 392 

species present in a community? The different patterns of changes observed in natural and artificial 393 

reefs - but also in estuarine ecosystems - confirmed that examining the functional groups of a 394 

community separately provides essential information and may clarifies why inconclusive patterns 395 

were observed when fish communities were considered as a whole (Morris et al., 2018; Nickerson et 396 

al., 2018). The contrasted patterns detected for benthic and pelagic piscivores also demonstrated 397 

that species diet must to be considered together with their habitat preferences. This can explain why 398 

ambiguous patterns were identified in other AR systems when piscivorous species were pooled 399 

(Neves dos Santos and Zalmon, 2015). Similarly, because species with significant responses to AR 400 

deployment are mainly sedentary with narrow distributional range, we should ask if the use of 401 
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experimental fishing alone is well-adapted to estimate AR efficiency. These surveys usually use 402 

passive devices (e.g. trammel nets) that mainly catch mobile species, i.e. the species the least 403 

affected by AR deployment. A complete vision of ARs fish community may potentially require a 404 

combination of pelagic and benthic nets specifically designed to catch sedentary species such as 405 

scorpionfishes. Such a sampling procedure has proved useful for assessing the efficiency of ARs in 406 

supporting fisheries (e. g. Neves Santos and Costa Monteiro, 1998). Underwater surveys, however, 407 

by efficiently estimating benthic species biomass as well as invertebrate assemblages, seem well-408 

adapted to scientific issues such as estimating community composition and measuring ecological 409 

efficiency.  410 

 411 

4.5. A modern vision of the attraction/production controversy based on Isotopic Functional 412 

Indices 413 

Our study provides a new perspective on how ARs can produce fish biomass. Assuming that the 414 

isotopic niche is a relevant proxy of the community’s trophic niche (Newsome et al., 2007), isotopic 415 

functional indices were recently shown to be reliable for measuring the main trophic fluxes within a 416 

community (Chaalali et al., 2017; Jabot et al., 2017). Here, they allowed us to provide an innovative 417 

vision of the temporal and functional components of the mechanisms of production involved in the 418 

biomass increase in ARs.  419 

Attraction and production were determined as two extremes of a wide range of ecological situations 420 

(Brickhill et al., 2005; Svane and Petersen, 2001). Our results corroborate this assertion, while 421 

highlighting that other dimensions, such as taxonomy, functional traits and temporal changes need 422 

to be included in this continuum. Changes in Isotopic Divergence (IDiv) supported the importance of 423 

considering time, at both seasonal and annual scales, in the attraction/production continuum. The 424 

initial predominance of pelagic species with high displacement abilities and low affinity for ARs was 425 

explained by fish attraction. Noticeable isotopic differences for pelagic piscivores are in line with the 426 

consumption of prey from a remote food web, leading to high IDiv values in winter 2009 (Fig. 4). 427 
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Increasing IDiv values, which mirrored an increase in trophic diversity, can be interpreted as a proxy 428 

of attraction. Contrarily, in winter 2015, the increase in benthic species biomass originating from 429 

production led to a decrease of IDiv values: benthic species, all having similar isotopic values, have 430 

benefited from production on AR. Such a result demonstrates the efficiency of stable isotopes as 431 

tools to overcome difficulties related to fish displacement between artificial reefs and remote 432 

habitats (Brickhill et al., 2005). By clustering biomass at the center of the isotopic space, the biplot 433 

suggested that benthic species were mainly influenced by a common local organic matter source that 434 

result from the pelagic-benthic coupling (i.e. downwards fluxes of pelagic organic matter) promoted 435 

by AR (Cresson et al., 2014a). Since pelagic production is the main source of organic matter in almost 436 

all Mediterranean ecosystems (Jennings et al., 1997; Pinnegar and Polunin, 2000), ARs did not modify 437 

the natural functioning of Mediterranean communities. The nature of organic matter fluxes in 438 

artificial reef fish community is comparable to that of natural communities. Time-repeated 439 

measurements of isotopic ratios alone would therefore not be powerful enough to detect and 440 

explain changes in community functioning, but the AR-driven coupling led to quantitative changes in 441 

flux intensity, with an increasing amount of OM available for secondary production, as suggested by 442 

changes in biomass and isotopic functional indices. The quite constant pattern of Isotopic Evenness 443 

(IEve) index reflected the maturation of the fish community, with a switch from a pelagic-based 444 

community to a benthic-based community, and most of the biomass shifting from the left to the 445 

biplot center (Fig. 4). Seasonal variations in the IEve index highlighted the importance of herbivores 446 

during summer. When food resources available on ARs were consumed by herbivores, the trophic 447 

specialization of the community decreased, which in turn induced an increase in the IEve index 448 

(Cucherousset and Villéger, 2015). 449 

 450 

It is however important to stress that the attraction/production debate around AR or MPA efficiency 451 

is mainly fishery-focused. Identifying and quantifying organic matter fluxes that support harvested 452 
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fish species emerges as crucial from an economic or management point of view but represents a 453 

partial vision of ARs functioning only. By providing habitats for adults and juveniles, the fundamental 454 

role of ARs is to support coastal benthic and demersal fish and macroinvertebrates populations to 455 

benefit fisheries. Such structures are also relevant scientific tools that have contributed to better 456 

identify and understand ecological mechanisms and processes behind changes in biomass (Miller, 457 

2002). ARs may be seen as carbon pumps that contribute to increase OM fluxes in comparison to 458 

previous barren substrates (Cresson et al., 2014a; Dewsbury and Fourqurean, 2010). It should be 459 

kept in mind, however, that organic matter fluxes within AR communities as well as biomass 460 

production are highly influenced by invertebrates; their preeminent role in these ecosystems should 461 

not be overlooked. Future studies applying functional tools to the whole community present on ARs 462 

is the next research step to accurately assess biomass fluxes in human-made rocky substrates.  463 
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Fig. 1: (a) Biomass of fish assemblages per functional trophic group (H: herbivores, RB: Rocky- bottom mesocarnivores, SB: soft- bottom mesocarnivores, M: 
macrocarnivores, BP: benthic piscivores, PP: pelagic piscivores, Z: zooplanktivores, No SI: species with undetermined stable isotope (SI) ratio); (b) mean 
relative biomass of each trophic group over the sampling period 
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Fig. 2: Seasonal changes (dotted lines) in species biomasses per functional group. Solid lines represent results from linear regression analyses performed, for 
each functional group, on the total species biomass (with * when significant, see Table 2). Empty and filled symbols represent winter and summer 
observations, respectively. Scales between panels are not comparable. Data are provided in Table S2.   
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Fig. 3: PCA-biplot (axis 1: 36.58%, axis 2: 19.97%) based on isotopic functional indices, trophic descriptors (δ13C and trophic level) and the total biomass of 
each functional trophic group. Correlations between each variable and the two first principal components are reported in the upper right table.   
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Fig. 4: Isotopic biplots of the community for the first (winter 2009, left panel) and last (winter 2015, right panel) surveys. Bubbles are proportional to the 
relative biomass of each species. Each color corresponds to a given functional group (green: herbivores; light blue: zooplanktivores; orange: RB 
mesocarnivores; yellow: SB mesocarnivores; red: benthic piscivores; dark blue: pelagic piscivores). 
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Table 1: Isotopic ratios (δ13C and δ15N) and trophic levels of the functional groups and results of the ANOVA test. Values with different letters are 

significantly different.  

Functional group 
n 

species 
δ13C 

(mean ± sd) 
δ15N 

(mean ± sd) 
Trophic level (mean ± sd) 

Herbivores 1 -17.65 ± 0.38 bcd 9.13 ± 0.50 ab 2.53 ± 0.10 a 

Zooplanktivores 3 -19.75 ± 0.37 a 8.28 ± 0.51 a 2.59 ± 0.30 a 

Macrocarnivores 3 -17.91 ± 0.50 cd 9.89 ± 0.43 b 3.39 ± 0.13 b 

Benthic piscivores 3 -18.03 ± 0.24 cd 10.27 ± 0.43 b 3.50 ± 0.13 b 

Pelagic piscivores 4 -18.32 ± 1.75 bc 13.63 ± 2.28 d 4.49 ± 0.67 c 

RB Mesocarnivores 8 -18.62 ± 0.95 b 10.97 ± 1.49 c 3.29 ± 0.33 b 

SB Mesocarnivores 3 -17.82 ± 0.62 d  10.33 ± 0.73 a 3.52 ± 0.21 b 

ANOVA F = 60.42, p<0.001 F = 106.33, p< 0.001 F = 177.54, p< 0.001 
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Table 2: Results from statistical analyses performed to assess trends and seasonality in species biomass for each functional group. rs: Spearman’s correlation 
coefficient. p-value: probability value associated with Mann Kendal (MK) and Mann Whitney (MW) tests. 

Functional group 

Trend  Seasonality 

Sen's slope MK p-value 
Spearman correlation  

Mean winter index (%) Mean summer index (%) MW p-value 
rs p-value  

Herbivores -0.41 0.707 -0.12 0.753  19.95 80.05 0.080 

RB Mesocarnivores 6.16 0.200 0.36 0.225  54.34 45.66 0.240 

SB Mesocarnivores 0.76 0.360 0.28 0.412  36.45 63.55 0.015 

Macrocarnivores 2.49 0.006 0.76 0.003  48.74 51.26 0.937 

Benthic piscivores 8.99 0.012 0.72 0.007  44.07 55.93 0.394 

Pelagic piscivores -1.15 0.143 -0.43 0.122  90.82 9.18 0.002 

Zooplanktivores -12.43 0.160 -0.56 0.065  55.05 44.95 0.818 

All species pooled -2.16 0.951 -0.03 0.951  52.15 47.85 0.588 
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Appendix 1: Is a seasonal-once sampling sufficient to depict community trophic functioning? 

C and N isotopic ratios were used in the present study to depict functional trophic structure of the 

fish community on the artificial reefs of the Bay of Marseilles. The major patterns derived from stable 

isotopes are pretty robust to minor changes, as we did in the present study (Jabot et al., 2017). 

Nevertheless, three major factors may alter fish isotopic ratios. Their potential effect on the present 

results and conclusions are discussed here.  

Isotopic ratio of a fish is directly dependent upon the isotopic ratio of the trophic baseline, i.e. the 

ratio of the primary production at the base of the food web it belongs to. Using an inappropriate 

baseline is a major and well-known pitfall of isotopic ecology (e. g. Jennings and van der Molen, 

2015). If baseline isotopic ratio is changing, an artefactual change in fish isotopic ratio would occur 

but without any ecological or biological changes. Here, considering one stable isotope ratio value by 

species may prevent this bias. 

The second factor that may affect fish isotopic ratios would be linked with dietary changes, notably 

considering that diet would be altered by the deployment of artificial reefs. Results of stomach 

contents performed on fish sampled on artificial reefs refuted this hypothesis, as diet of fish on 

artificial reefs was pretty similar with fish diets in other Mediterranean rocky reefs, with >10 year lag 

between the studies (Cresson et al., 2014b and references therein). Thus, it would be reasonable to 

consider no diet changes during the study period, and thus no effect on isotopic ratios.  

The third factor that may drive changes in fish isotopic ratios would be an alteration of the main 

source of organic matter to the community, driven by the deployment of artificial reefs. Results of 

the present and past studies demonstrated that artificial reefs increase the importance of pelagic 

subsidies into the benthic community, through increased pelago-benthic coupling, notably as a result 

of the filtering activity of suspension feeders dominating the artificial reef community (Cheung et al., 

2010; Cresson et al., 2014a; Dewsbury and Fourqurean, 2010). Such an effect here would result in an 

increase of the pelagic feature of fish isotopic ratios.  

But pelagic primary production is largely demonstrated as the major source of organic matter in 

quite all Mediterranean fish communities, either in coastal soft-bottom systems (Carlier et al., 2007), 

rocky reefs (Belloni et al., 2019; Jennings et al., 1997) or Posidonia oceanica seagrass meadows 

(Ourgaud, 2015; Pinnegar and Polunin, 2000). Isotopic ratios measured for fish in the early stage of 

artificial reefs deployment are consistent with this trend and largely explained by their belonging to a 

food web based on pelagic subsidies. Functional changes in the fish community caused by artificial 

reefs deployment do not modify the nature of OM fluxes but only their intensity. No major changes 

in fish isotopic ratios can thus be expected after artificial reef deployment and community 

maturation.  

Thus, we feel pretty confident on the robustness of isotopic ratios measured in 2010 to describe the 

trophic structure of the community and its temporal changes over the 6-year period of the study. 
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Appendix 2: Detailed protocol for the average percentage method 
 
 
To clarify the procedure, we used the following case study: 

 Time period Observations 

March 2012 471 

June 2012 480 

September 2012 492 

December 2012 520 

March 2013 427 

June 2013 463 

September 2013 484 

December 2013 494 

March 2014 425 

June 2014 462 

September 2014 463 

December 2014 499 
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Step 1: for each year, we calculated annual means 

2012 (annual mean) 2013 (annual mean) 2014 (annual mean) 

490.75 467 462.25 

 

Step 2: For a given period 𝑝 of a given year 𝑦, we expressed the observation 𝑥𝑝,𝑦 as the proportion 

𝑷𝑝,𝑦 of the annual mean 𝑥̅ of the year 𝑦. Therefore, for March 2012:  

𝑃𝑚𝑎𝑟𝑐ℎ,2012 = 
𝑥𝑚𝑎𝑟𝑐ℎ,2012

𝑥̅2012
 = 

471

490.75
 = 0.9598 

 

Time period Observations Proportions 

March 2012 471 0.9598 

June 2012 480 0.9781 

September 2012 492 1.0025 

December 2012 520 1.0596 

March 2013 427 0.9143 

June 2013 463 0.9914 

September 2013 484 1.0364 

December 2013 494 1.0578 

March 2014 425 0.9194 

June 2014 462 0.9995 

September 2014 463 1.0016 

December 2014 499 1.0795 

 

Step 3: For each period 𝑝 (or season), we computed the index S, i.e. the average proportion of each 

period. For example, for March: 

𝑆𝑚𝑎𝑟𝑐ℎ = 
0.9598+0.9143+0.9194

3
 = 0.9312 

Seasonal indices 

March June September December 

0.9312 0.9897 1.0135 1.0656 

 

Step 4: Seasonal indices S are then used to smooth/deseasonalise the observations  𝑥, as follows: 

For a given period 𝑝 of a given year 𝑦, we expressed the observation 𝑥𝑝,𝑦 as the proportion 𝑷𝑝,𝑦 of 

the annual mean 𝑥̅ of the year 𝑦. Therefore, for March 2012: 

𝑥𝑑𝑚𝑎𝑟𝑐ℎ,2012 = 
𝑥𝑚𝑎𝑟𝑐ℎ,2012

𝑺𝑚𝑎𝑟𝑐ℎ
 = 

471

0.9312
 = 505.80 

with 𝑥𝑑𝑝,𝑦 the deseasonalised observation at the given period 𝑝 (here, in march) of the given year 𝑦 

(here, in 2012). 
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Time period Observations Proportions Deseasonalised 
observations 

March 2012 471 0.9598 505.80 

June 2012 480 0.9781 485.01 

September 2012 492 1.0025 485.45 

December 2012 520 1.0596 487.97 

March 2013 427 0.9143 458.55 

June 2013 463 0.9914 467.82 

September 2013 484 1.0364 477.54 

December 2013 494 1.0578 463.57 

March 2014 425 0.9194 456.40 

June 2014 462 0.9995 466.83 

September 2014 463 1.0016 456.82 

December 2014 499 1.0795 468.26 

 

 

 

Example of application of the average percentage method on a seasonal time series (March 2012 – 

December 2014, in blue) that allows to compute the deseasonalised time series (in red). 
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Figure S1: Temporal changes in species length. For each period, the mean length of species is represented by the bulge in the violin, its variability being 
indicated by the tails. Colors indicate functional trophic groups (green: herbivores; light blue: zooplanktivores; orange: Rocky-Bottom mesocarnivores; 
yellow: Soft-Bottom mesocarnivores; red: benthic piscivores; dark blue: pelagic piscivores).  
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Fig. S2: Temporal trends of species richness within each trophic group. Lines for benthic piscivores, macrocarnivores and zooplanktivores are mostly 

confounded.   
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Figure S3: Seasonal changes (dotted lines) in species standardized biomass per functional group. Solid lines are regression for the total biomass per group 

(with * when significant, see Table 2). Empty and filled symbols represent winter and summer observations, respectively. Scales between panels are not 

comparable.   
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Figure S3: Temporal changes in isotopic indices for the period 2009-2015. Filled circles indicate summer values and empty circles are for winter. Dotted lines 

show the average value of each index. 
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Table S1: Isotopic ratios for primary producers and organic matter pools. Details about sampling can be found in dedicated papers  

OM source 
δ13C 

(mean ± sd) 
δ15N 

(mean ± sd) 
Explanation Source 

Microphytoplancton -22.70 ± 0.76 ‰ 3.17 ± 1.25 ‰ Cells size : > 10 µm Darnaude et al (2004)
, 
Nanophytoplancton -25.23 ± 1.16 ‰ 1.77 ± 0.25 ‰ Cells size : 2 – 10 µm Rau et al (1990) 

Macroalgae - 21.09 ± 2.41 ‰ 3.74 ± 0.81 ‰ 
Average values measured for 

18 species 
present study ; Cresson et al.(2014) 

Posidonia oceanica 
leaves  

-15.44 ± 1.03 ‰  3.74 ± 0.90 ‰  
Average values for leaves, 

excluding epibionts, and dead 
and senescent tissues  

present study; Cresson et al.(2014) 

Terrigenous inputs -26.25 ± 0.51 ‰ 4.48 ± 0.41 ‰ 
Average value of 4 sampling 

during flooding events 
present study; Cresson et al.(2012)  

Sewage outfall -25.06 ± 0.23 % -0.01 ± 0.14‰  Topçu et al. (2010) 
 -25.50 ± 0.62 ‰  -0.58 ±0.82‰   Bănaru et al (2014) 
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Tab. S2: Composition of fish assemblages on artificial reefs in the Bay of Marseille. Standard length (SI): average length (in cm) of the individuals used for 

stable isotopes (δ13C and δ15N). Length (survey): average length (in cm) of individuals observed during underwater surveys. Relative biomass (in kg) is the 

biomass of each species divided by the total biomass of the community. Note that the sum of mean biomass is not equal to 100%, as isotopic ratios are not 

determined for all the species of the assemblages. Species are sorted in descending order following their relative biomass.sd: standard deviation. RB: rocky 

bottom. SB: soft-bottom. NA: length not available for Conger conger as the caudal fin of the individual was too damaged. 

Species 
Functional trophic 

group 

Standard length (SI-cm)  δ
13

C (‰)  δ
15

N (‰) 
Trophic 

level  
Length (survey - cm)  Biomass 

mean ± sd min-max mean ± sd mean ± sd mean ± sd mean ± sd min -max Total (kg) Relative  

Diplodus sargus (Linnaeus,1758) RB mesocarnivores 16 ± 2 14 - 20 -18.77 ± 0.69 11.54 ± 0.73 3.25 ± 0.21 23 ± 4 7-38 1202.31 18.6% 

Boops boops (Linnaeus, 1758) Zooplanktivores 16 ± 2 13 - 22 -19.90 ± 0.29 8.46 ± 0.32 2.34 ± 0.10 14 ± 3 6-24 1063.78 16.5% 

Conger conger (Linnaeus, 1758) Benthic piscivores NA - -17.80 ± 0.41 11.24 ± 0.03 3.79 ± 0.12 126 ± 25 60-180 880.36 13.6% 

Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817) RB mesocarnivores 12 ± 2 7-17 -18.14 ± 0.78 11.59 ± 0.83 3.26 ± 0.24 15 ± 4 4-34 863.13 13.4% 

Spicara smaris (Linnaeus, 1758) Zooplanktivores 14 ± 1 12-15 -19.73 ± 0.41 8.61 ± 0.77 3.01 ± 0.23 13 ± 3 6-22 315.60 4.9% 

Mullus surmuletus Linnaeus, 1758 SB mesocarnivores 14 ± 2 9-22 -17.88 ± 0.72 9.94 ± 0.67 3.40 ± 0.20 19 ± 5 8-40 213.06 3.3% 

Dicentrarchus labrax (Linnaeus, 1758) Pelagic piscivores 33 ± 6 27 -43 -18.20 ± 2.53 13.92 ± 0.60 4.57 ± 0.18 41 ± 9 25 - 80 201.00 3.1% 

Sarpa salpa (Linnaeus, 1758) Herbivores 23 ± 2 27-32 -17.65 ± 0.38 9.13 ± 0.50 2.53 ± 0.10 27 ± 5 20-35 198.73 3.1% 

Spicara maena (Linnaeus, 1758) Zooplanktivores 13 ± 2 10-17 -19.51 ± 0.33 7.83 ± 0.25 2.78 ± 0.07 14 ± 3 7-24 164.39 2.5% 

Scorpaena scrofa Linnaeus, 1758 Benthic piscivores 18 ± 4 12-22 -18.07 ± 0.22 10.06 ± 0.23 3.44 ± 0.07 26 ± 7 10-45 161.12 2.5% 

Coris julis (Linnaeus, 1758) RB mesocarnivores 11 ± 2 07-14 -18.62 ± 0.55 9.74 ± 0.31 3.34 ± 0.09 11 ± 4 2-24 153.65 2.4% 

Diplodus puntazzo (Walbaum, 1792) RB mesocarnivores 9 ± 0 - -16.56 ± 0.02 12.27 ± 0.06 3.46 ± 0.02 22 ± 4 8-32 148.67 2.3% 

Serranus cabrilla (Linnaeus, 1758) Macrocarnivores 14 ± 1 11-17 -18.36 ± 0.20 9.79 ± 0.21 3.36 ± 0.06 17 ± 3 4-28 133.99 2.1% 

Scorpaena porcus Linnaeus, 1758 Macrocarnivores 14 ± 4 8-25 -17.67 ± 0.49 9.74 ± 0.41 3.34 ± 0.12 17 ± 4 8-30 112.97 1.7% 

Diplodus annularis (Linnaeus,1758) RBmesocarnivores 12 ± 2 9-19 -18.85 ± 1.10 11.72 ± 1.65 3.30 ± 0.48 14 ± 3 5-22 79.12 1.2% 

Phycis phycis (Linnaeus, 1766) Benthic piscivores 33 ± 0 33 - 34 -17.95 ± 0.30 10.73 ± 0.33 3.64 ± 0.10 29 ± 9 15 - 60 75.64 1.2% 

Scorpaena notata Rafinesque, 1810 Macrocarnivores 11 ± 2 7-15 -17.66 ± 0.39 10.15 ± 0.50 3.46 ± 0.15 14 ± 3 6-22 58.91 0.9% 

Symphodus tinca (Linnaeus, 1758) RB mesocarnivores 16 ± 5 12-21 -18.78 ± 0.84 9.55 ± 0.52 3.29 ± 0.15 18 ± 6 2-36 56.89 0.9% 

Symphodus mediterraneus (Linnaeus, 1758) RB mesocarnivores 11 ± 1 10-13 -19.25 ± 0.26 9.17 ± 0.52 3.18 ± 0.15 10 ± 4 2-20 41.06 0.6% 

Spondyliosoma cantharus (Linnaeus, 1758) RB mesocarnivores 12 ± 0 - -17.30 ±0.02 10.83 ± 0.05 3.66 ± 0.02 16 ± 5 8-28 32.21 0.5% 

Trachurus spp. (Steindachner, 1868) Pelagic piscivores 26 ± 2 24 - 28 -18.74 ± 0.77 14.87 ± 2.98 4.85 ± 0.88 28 20-28 22.70 0.4% 
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Zeus faber Linnaeus, 1758 Macrocarnivores 26 ± 0 - -17.97 ± 0.06 10.80 ± 0.04 3.66 ± 0.01 50 - 2.51 0.0% 

Pagellus spp.  SB mesocarnivores 15 ± 2 10-19 -17.77 ± 0.26 10.81 ± 0.60 3.66 ± 0.18 19 ± 1 18 - 20 2.11 0.0% 

Pagrus pagrus (Linnaeus, 1758) Macrocarnivores 31 ± 0 - -17.73 ± 0.04 11.04 ± 0.03 3.73 ± 0.01 22 ± 5 16 - 25 1.16 0.0% 
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Table S2: Changes in biomass (in kg) for the period 2009-2015 estimated from the difference between the final biomass (BMfinal) measured in winter 2015 and the 

initial biomass (BMinitial) in winter 2009 (except C. conger, S. maena, S. smaris and S. salpa for which the summer 2009 value was used) and calculated as follows:  

𝐶ℎ𝑎𝑛𝑔𝑒 =
𝐵𝑀𝐹𝑖𝑛𝑎𝑙 − 𝐵𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐵𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 

Values were not calculated for species with less than three occurrences or with irregular distribution. Species richness is the total number of species observed on 

artificial reefs, considered or not for stable isotope analyses. 

Functional 
trophic group 

Species 
2009 2010 2011 2012 2013 2014 2015 

Change 
Winter Summer Winter Summer Winter Summer Winter Summer Winter Summer Winter Summer Winter 

SBMeso Mullus surmuletus 0.26 20.15 8.77 18.13 17.22 15.36 15.47 24.43 17.90 18.40 6.80 8.72 41.47 159.71 

RBMeso Spondyliosoma cantharus 0.16 0.71 0.66 1.01 0.99 1.77 0.54 2.19 0.70 0.09 1.97 0.21 21.19 130.05 

BenthicP Scorpaena scrofa 0.19 4.33 4.31 9.57 15.83 8.55 17.79 22.07 14.15 15.50 20.38 6.74 21.72 111.90 

RBMeso Diplodus puntazzo 1.06 4.57 1.97 6.17 2.88 7.79 11.59 49.38 14.25 8.25 8.42 5.15 27.20 24.64 

BenthicP Phycis phycis 0.37 0.37 0.43 0.96 4.01 4.67 14.33 5.65 9.00 7.91 12.92 6.81 8.21 21.29 

Macrocar Scorpaena porcus 0.99 2.31 4.76 2.98 8.82 4.31 10.32 17.52 10.61 16.56 11.77 5.67 16.35 15.52 

RBMeso Diplodus vulgaris 16.21 63.62 45.91 51.73 48.34 71.28 36.32 64.51 61.80 66.76 59.47 27.18 250.00 14.43 

RBMeso Diplodus annularis 0.82 4.73 6.67 6.04 6.73 6.77 5.15 4.90 8.05 4.90 9.03 4.98 10.35 11.68 

RBMeso Symphodus mediterraneus 0.46 1.76 1.90 2.30 2.92 3.26 3.64 3.79 4.09 4.34 4.56 2.71 5.34 10.57 

BenthicP Conger conger 0.00 21.02 41.49 39.76 98.33 107.81 85.70 84.08 68.93 100.60 92.61 37.75 102.28 3.87 

Macrocar Serranus cabrilla 3.27 7.91 9.81 7.41 10.33 10.98 8.91 11.29 14.45 13.96 14.27 7.94 13.46 3.12 

Zoopk Spicara maena 0.00 17.05 16.97 10.72 25.04 2.31 7.29 7.41 8.46 6.10 17.47 2.59 42.97 1.52 

RBMeso Symphodus tinca 0.68 3.73 3.10 6.96 7.88 7.03 4.15 7.18 4.65 3.13 4.25 2.75 1.39 1.04 

RBMeso Diplodus sargus 69.68 62.03 147.71 78.79 153.21 83.06 80.20 58.64 139.58 31.52 131.17 75.40 91.32 0.31 

RBMeso Coris julis 12.66 14.18 13.23 11.25 15.02 11.51 12.39 13.03 12.32 9.83 11.82 4.90 11.52 -0.09 

Zoopk Spicara smaris 0.00 43.56 42.97 47.05 29.63 14.98 11.35 8.41 20.52 15.84 33.34 17.93 30.01 -0.31 

PelagicP Dicentrarchus labrax 37.18 11.03 42.81 1.96 11.81 0.00 23.66 8.56 13.78 0.00 36.86 1.33 12.02 -0.68 

Zoopk Boops boops 161.55 328.73 160.63 65.28 178.25 20.45 6.60 6.64 8.04 49.90 30.89 25.77 21.05 -0.87 

Macrocar Scorpaena notata 0.27 1.39 3.56 3.41 2.87 1.95 6.62 5.69 9.00 9.25 8.07 6.80 0.03 -0.88 
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Herbiv Sarpa salpa 0.00 6.56 6.75 27.58 0.00 21.87 0.00 109.94 0.98 0.00 0.00 1.13 23.91 - 

PelagicP Pagrus pagrus 0.00 0.00 0.00 0.03 0.45 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00 - 

PelagicP Trachurus spp. 0.00 0.00 0.00 0.00 0.00 0.00 17.79 4.77 0.14 0.00 0.00 0.00 0.00 - 

PelagicP Zeus faber 0.00 0.00 0.00 0.00 2.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 

SBMeso Pagellus spp. 0.00 0.00 0.00 1.13 0.20 0.02 0.40 0.12 0.45 0.00 0.00 0.00 0.00 - 

All species 305.81 619.76 564.42 400.22 643.28 405.71 380.22 520.18 441.86 382.84 516.51 252.47 751.80 1.46 

Total species richness 25 33 33 33 33 31 33 29 30 27 29 26 35 
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Table S3: Results from statistical analyses performed to assess trends in species biomass at the species level. rs: Spearman’s correlation coefficient. p-value: 
probability value associated with Mann Kendal (MK) and Mann Whitney (MW) tests. 

Species 
Functional trophic 

group 

Trend Seasonality 

Sen's slope MK p-value 
Spearman correlation Mean winter 

index (%) 
Mean 

summer index 
(%) 

MW p-value 

rs p-value 

Sarpa salpa Herbivores -0.41 0.707 -0.09 0.750 19.95 80.05 0.080 

Coris julis RB mesocarnivores -0.24 0.009 -0.75 0.003 55.48 44.52 0.026 

Diplodus annularis RB mesocarnivores 0.34 0.024 0.59 0.062 49.15 50.85 0.394 

Diplodus puntazzo RB mesocarnivores 1.46 0.012 0.64 0.026 35.73 64.27 0.026 

Diplodus sargus RB mesocarnivores -1.1 0.583 -0.19 0.518 64.30 35.70 0.002 

Diplodus vulgaris RB mesocarnivores 2.34 0.059 0.56 0.070 43.41 56.59 0.180 

Spondyliosoma cantharus RB mesocarnivores 0.17 0.161 0.28 0.300 48.68 51.32 0.818 

Symphodus mediterraneus RB mesocarnivores 0.35 0 0.84 0.003 45.59 54.41 0.180 

Symphodus tinca RB mesocarnivores -0.14 0.669 -0.12 0.709 42.72 57.28 0.180 

Mullus surmuletus SB mesocarnivores 0.76 0.360 0.26 0.359 36.44 63.56 0.015 

Pagellus spp. SB mesocarnivores -- -- 0 1 -- -- -- 

Scorpaena notata Macrocarnivores 0.62 0.059 0.46 0.113 47.39 52.61 0.394 

Scorpaena porcus Macrocarnivores 1.19 0.004 0.78 0.004 50.39 49.61 0.937 

Serranus cabrilla Macrocarnivores 0.67 0.012 0.68 0.015 48.98 51.02 0.937 

Phycis phycis Benthic piscivores 0.88 0.002 0.83 0.003 52.97 47.03 0.623 

Scorpaena scrofa Benthic piscivores 1.59 0.009 0.70 0.012 44.62 55.38 0.589 

Conger conger Benthic piscivores 6.37 0.100 0.47 0.102 43.49 56.51 0.485 

Dicentrarchus labrax Pelagic piscivores -1.38 0.180 -0.45 0.132 90.45 9.55 0.002 

Pagrus pagrus Pelagic piscivores -- -- 0 1 -- -- -- 

Trachurus spp. Pelagic piscivores -- -- 0 1 -- -- -- 

Zeus faber Pelagic piscivores -- -- 0 1 -- -- -- 

Boops boops Zooplanktivores -12.57 0.044 -0.62 0.023 52.00 48.00 0.699 

Spicara maena Zooplanktivores 0.12 0.855 0.13 0.732 57.94 42.06 0.394 

Spicara smaris Zooplanktivores -0.08 1 -0.04 0.854 48.84 51.16 0.394 
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