N. Fischer, Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM, Nature, vol.520, pp.567-570, 2015.

M. Selmer, Structure of the 70S ribosome complexed with mRNA and tRNA, Science, vol.313, pp.1935-1942, 2006.

L. D. Cabrita, A structural ensemble of a ribosome-nascent chain complex during cotranslational protein folding, Nat. Struct. Mol. Biol, vol.23, pp.278-285, 2016.

A. Deckert, Structural characterization of the interaction of ?-synuclein nascent chains with the ribosomal surface and trigger factor, Proc. Natl. Acad. Sci. USA, vol.113, pp.5012-5017, 2016.

C. A. Waudby, Systematic mapping of free energy landscapes of a growing filamin domain during biosynthesis, Proc. Natl. Acad. Sci. USA, vol.115, pp.9744-9749, 2018.

L. Deshmukh, Structure and dynamics of full-length HIV-1 capsid protein in solution, J. Am. Chem. Soc, vol.135, pp.16133-16147, 2013.

C. D. Schwieters, Solution structure of the 128 kDa enzyme I dimer from Escherichia coli and its 146 kDa complex with HPr using residual dipolar couplings and small-and wide-angle X-ray scattering, J. Am. Chem. Soc, vol.132, pp.13026-13045, 2010.

A. M. Ruschak and L. E. Kay, Proteasome allostery as a population shift between interchanging conformers, Proc. Natl. Acad. Sci. USA, vol.109, pp.3454-62, 2012.

M. C. Wahl and W. Möller, Structure and function of the acidic ribosomal stalk proteins, Curr. Protein Pept. Sci, vol.3, pp.93-106, 2002.

M. Helgstrand, The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain, J. Mol. Biol, vol.365, pp.468-479, 2007.

U. Kothe, H. Wieden, D. Mohr, and M. V. Rodnina, Interaction of helix D of elongation factor Tu with helices 4 and 5 of protein L7/12 on the ribosome, J. Mol. Biol, vol.336, pp.1011-1021, 2004.

D. S. Tourigny, I. S. Fernandez, A. C. Kelley, and V. Ramakrishnan, Elongation factor G bound to the ribosome in an intermediate state of translocation, Science, vol.340, pp.1235490-1235490, 2013.

J. Pallesen, Cryo-EM visualization of the ribosome in termination complex with apo-RF3 and RF1, vol.2, p.411, 2013.

X. Ge, C. S. Mandava, C. Lind, J. Aqvist, and S. Sanyal, Complementary charge-based interaction between the ribosomal-stalk protein L7/12 and IF2 is the key to rapid subunit association, Proc. Natl. Acad. Sci. USA, vol.115, pp.4649-4654, 2018.

I. I. Davydov, Evolution of the protein stoichiometry in the L12 stalk of bacterial and organellar ribosomes, Nat Commun, vol.4, p.1387, 2013.

A. R. Subramanian, Copies of proteins L7 and L12 and heterogeneity of the large subunit of Escherichia coli ribosome, J. Mol. Biol, vol.95, pp.1-8, 1975.

P. Traub and M. Nomura, Structure and function of Escherichia coli ribosomes. I. Partial fractionation of the functionally active ribosomal proteins and reconstitution of artificial subribosomal particles, J. Mol. Biol, vol.34, pp.575-593, 1968.

C. S. Mandava, Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G, Nucleic Acids Res, vol.40, pp.2054-2064, 2012.

A. V. Oleinikov, G. G. Jokhadze, and R. R. Traut, A single-headed dimer of Escherichia coli ribosomal protein L7/L12 supports protein synthesis, Proc. Natl. Acad. Sci. USA, vol.95, pp.4215-4218, 1998.

A. V. Oleinikov, B. Perroud, B. Wang, and R. R. Traut, Structural and functional domains of Escherichia coli ribosomal protein L7/ L12. The hinge region is required for activity, J. Biol. Chem, vol.268, pp.917-922, 1993.

D. Mohr, W. Wintermeyer, and M. V. Rodnina, GTPase activation of elongation factors Tu and G on the ribosome, Biochemistry, vol.41, pp.12520-12528, 2002.

M. Diaconu, Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation, Cell, vol.121, pp.991-1004, 2005.

A. T. Gudkov, G. M. Gongadze, V. N. Bushuev, and M. S. Okon, Proton nuclear magnetic resonance study of the ribosomal protein L7/L12 in situ, FEBS Lett, vol.138, pp.229-232, 1982.

J. Christodoulou, Heteronuclear NMR investigations of dynamic regions of intact Escherichia coli ribosomes, Proc. Natl. Acad. Sci. USA, vol.101, pp.10949-10954, 2004.

F. A. Mulder, Conformation and dynamics of ribosomal stalk protein L12 in solution and on the ribosome, Biochemistry, vol.43, pp.5930-5936, 2004.

E. V. Bocharov, A. T. Gudkov, and A. S. Arseniev, Topology of the secondary structure elements of ribosomal protein L7/L12 from E. coli in solution, FEBS Lett, vol.379, pp.291-294, 1996.

P. Bernadó, Structure and Dynamics of Ribosomal Protein L12: An Ensemble Model Based on SAXS and NMR Relaxation, Biophys. J, vol.98, pp.2374-2382, 2010.

J. R. Tolman, J. M. Flanagan, M. A. Kennedy, and J. H. Prestegard, Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution, Proc. Natl. Acad. Sci. USA, vol.92, pp.9279-9283, 1995.

N. Tjandra and A. Bax, Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium, Science, vol.278, pp.1111-1114, 1997.

K. Chen and N. Tjandra, The use of residual dipolar coupling in studying proteins by NMR, Top Curr Chem, vol.326, pp.47-67, 2012.

M. Rückert and G. Otting, Alignment of Biological Macromolecules in Novel Nonionic Liquid Crystalline Media for NMR Experiments, Journal of the American Chemical Society, 2000.

G. Kontaxis, G. M. Clore, and A. Bax, Evaluation of cross-correlation effects and measurement of one-bond couplings in proteins with short transverse relaxation times, J. Magn. Reson, vol.143, pp.184-196, 2000.

A. M. Cassaignau, A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy, Nat Protoc, vol.11, pp.1492-1507, 2016.

M. R. Hansen, P. Hanson, and A. Pardi, Filamentous bacteriophage for aligning RNA, DNA, and proteins for measurement of nuclear magnetic resonance dipolar coupling interactions, Meth. Enzymol, vol.317, pp.220-240, 2000.

E. V. Bocharov, From structure and dynamics of protein L7/L12 to molecular switching in ribosome, J. Biol. Chem, vol.279, pp.17697-17706, 2004.

M. Zweckstetter, NMR: prediction of molecular alignment from structure using the PALES software, Nat Protoc, vol.3, pp.679-690, 2008.

C. D. Schwieters, G. A. Bermejo, and G. M. Clore, Xplor-NIH for molecular structure determination from NMR and other data sources, Protein Sci, vol.27, pp.26-40, 2018.

C. Camilloni and M. Vendruscolo, A Tensor-Free Method for the Structural and Dynamical Refinement of Proteins using Residual Dipolar Couplings, J Phys Chem B, 2014.

M. Zweckstetter and A. Bax, Evaluation of uncertainty in alignment tensors obtained from dipolar couplings, J. Biomol. NMR, vol.23, pp.127-137, 2002.

J. Sass, Purple Membrane Induced Alignment of Biological Macromolecules in the Magnetic Field, J. Am. Chem. Soc, vol.121, pp.2047-2055, 1999.

D. Häussinger, J. Huang, S. Grzesiek, and . Dota-m8, An extremely rigid, high-affinity lanthanide chelating tag for PCS NMR spectroscopy, J. Am. Chem. Soc, vol.131, pp.14761-14767, 2009.

P. Caldwell, D. C. Luk, H. Weissbach, and N. Brot, Oxidation of the methionine residues of Escherichia coli ribosomal protein L12 decreases the protein's biological activity, Proc. Natl. Acad. Sci. USA, vol.75, pp.5349-5352, 1978.

A. Savelsbergh, D. Mohr, U. Kothe, W. Wintermeyer, and M. Rodnina, Control of phosphate release from elongation factor G by ribosomal protein L7/12, EMBO J, vol.24, pp.4316-4323, 2005.

F. W. Studier, Protein production by auto-induction in high density shaking cultures, Protein Expr. Purif, vol.41, pp.207-234, 2005.

M. Zweckstetter and A. Bax, Characterization of molecular alignment in aqueous suspensions of Pf1 bacteriophage, J. Biomol. NMR, vol.20, pp.365-377, 2001.

J. Tanner, Use of the stimulated echo in NMR diffusion studies, J Chem Phys, 1970.

F. Ferrage, M. Zoonens, D. E. Warschawski, J. Popot, and G. Bodenhausen, Slow diffusion of macromolecular assemblies by a new pulsed field gradient NMR method, J. Am. Chem. Soc, vol.125, pp.2541-2545, 2003.

L. E. Kay, D. A. Torchia, and A. Bax, Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease, Biochemistry, vol.28, pp.8972-8979, 1989.

K. T. Dayie and G. Wagner, Relaxation-rate measurements for 15N-1H groups with pulsed-field gradients and preservation of coherence pathways, Journal of Magnetic Resonance, vol.111, pp.121-126, 1994.

C. D. Schwieters, J. J. Kuszewski, N. Tjandra, and G. M. Clore, The Xplor-NIH NMR molecular structure determination package, J. Magn. Reson, vol.160, pp.65-73, 2003.

J. P. Kirkpatrick, P. Li, and T. Carlomagno, Probing mutation-induced structural perturbations by refinement against residual dipolar couplings: application to the U4 spliceosomal RNP complex, Chembiochem, vol.10, pp.1007-1014, 2009.