M. Berveiller, B. Sudret, and M. Lemaire, Stochastic finite element: a non intrusive approach by regression, European Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique, vol.15, issue.1-3, pp.81-92, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01665506

G. Blatman and B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probabilist. Eng. Mech, vol.25, issue.2, pp.183-197, 2010.

S. Choi, R. V. Grandhi, R. A. Canfield, and C. L. Pettit, Polynomial chaos expansion with Latin hypercube sampling for estimating response variability, AIAA J, vol.42, issue.6, pp.1191-1198, 2004.

C. A. Clark and K. B. Smith, An efficient normal mode solution to wave propagation prediction, IEEE J. Ocean. Eng, vol.33, issue.4, pp.462-476, 2008.

P. Cristini and D. Komatitsch, Some illustrative examples of the use of a spectral-element method in ocean acoustics, J. Acoust. Soc. Am, vol.131, issue.3, pp.229-235, 2012.

F. R. Dinapoli and R. L. Deavenport, Theoretical and numerical Green's function field solution in a plane multilayered medium, J. Acoust. Soc. Am, vol.67, issue.3, pp.92-105, 1980.

V. Dubourg, B. Sudret, and J. M. Bourinet, Reliability-based design optimization using kriging surrogates and subset simulation, Struct. Multidiscip. Optim, vol.44, issue.5, pp.673-690, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00587311

O. Dubrule, Cross validation of kriging in a unique neighborhood, J. Int. Ass. Math. Geol, vol.15, issue.6, pp.687-699, 1983.

T. A. El-mihoub, A. A. Hopgood, L. Nolle, and A. Battersby, Hybrid genetic algorithms: A review, Engineering Letters, vol.13, issue.2, pp.124-137, 2006.

S. Finette, Embedding uncertainty into ocean acoustic propagation model, J. Acoust. Soc. Am, vol.117, issue.3, pp.997-100, 2005.

S. Finette, A stochastic representation of environmental uncertainty and its coupling to acoustic wave propagation, J. Acoust. Soc. Am, vol.120, issue.5, pp.2567-2579, 2006.

S. Finette, A stochastic response surface formulation of acoustic propagation through an uncertain ocean waveguide environment, J. Acoust. Soc. Am, vol.126, issue.5, pp.2242-2247, 2009.

F. Gerdes and S. Finette, A stochastic response surface formulation for the description of acoustic propagation through an uncertain internal wave field, J. Acoust. Soc. Am, vol.132, issue.4, pp.2251-2264, 2012.

R. G. Ghanem and P. D. Spanos, Stochastic finite element method: Response statistics, Stochastic finite elements: a spectral approach, pp.101-119, 1991.

R. G. Ghanem and P. D. Spanos, Stochastic finite elements: a spectral approach, 2003.

L. L. Gratiet, S. Marelli, and B. Sudret, Metamodel-based sensitivity analysis: Polynomial chaos expansions and Gaussian processes. Handbook of Uncertainty Quantification, pp.1-37, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01428947

. Xp, L. Guo, D. Zhang, Z. Wang, Y. Lu et al., Efficient computation and uncertainty analysis of underwater acoustic propagation based on kriging surrogate model, DEStech Transactions on Computer Science and Engineering, 2017.

T. Homma and A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliab. Eng. Syst. Safety, vol.52, issue.1, pp.1-17, 1996.

K. R. James and D. R. Dowling, Pekeris waveguide comparisons of methods for predicting acoustic field amplitude uncertainty caused by a spatially uniform environmental uncertainty (L), J. Acoust. Soc. Am, vol.129, issue.2, pp.589-592, 2011.

E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev, vol.106, issue.4, p.620, 1957.

F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics, 2011.

J. B. Keller, Rays, waves and asymptotics, Bull. Am. Math. Soc, vol.84, issue.5, pp.727-750, 1978.

S. Khazaie, R. Cottereau, and D. Clouteau, Influence of the spatial correlation structure of an elastic random medium on its scattering properties, J. Sound Vib, vol.370, pp.132-148, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01281405

S. Khazaie, X. Wang, and P. Sagaut, Localization of random acoustic sources in an inhomogeneous medium, J. Sound Vib, vol.384, pp.75-93, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01375680

Y. Y. Khine, D. B. Creamer, and S. Finette, Acoustic propagation in an uncertain waveguide environment using stochastic basis expansions, J. Comput. Acoust, vol.18, issue.04, pp.397-441, 2010.

L. Klime?, Correlation functions of random media, Pure Appl. Geophys, vol.159, issue.7-8, pp.1811-1831, 2002.

W. A. Kuperman and J. F. Lynch, Shallow-water acoustics, Phys Today, pp.55-61, 2004.

C. Lataniotis, S. Marelli, and B. Sudret, Gaussian process modelling using UQLab, 2017.

O. , L. Maître, and O. M. Knio, Spectral methods for uncertainty quantification: with applications to computational fluid dynamics, 2010.

D. Lee and A. D. Pierce, Parabolic equation development in recent decade, J. Comput. Acoust, vol.3, issue.02, pp.95-173, 1995.

P. F. Lermusiaux, J. Xu, C. Chen, S. Jan, L. Y. Chiu et al., Coupled ocean-acoustic prediction of transmission loss in a continental shelfbreak region: Predictive skill, uncertainty quantification, and dynamical sensitivities

, IEEE J. Ocean. Eng, vol.35, issue.4, pp.895-916, 2010.

S. J. Levinson, E. K. Westwood, R. A. Koch, S. K. Mitchell, and C. V. Sheppard, An efficient and robust method for underwater acoustic normal-mode computations, J. Acoust. Soc. Am, vol.97, issue.3, pp.1576-1585, 1995.

W. Y. Luo, X. L. Yu, X. F. Yang, and R. H. Zhang, Analytical solution based on the wavenumber integration method for the acoustic field in a Pekeris waveguide, Chin. Phys. B, vol.25, issue.4, p.44302, 2016.

A. Mànuel, X. Roset, J. Rio, D. M. Toma, N. Carreras et al., Ocean bottom seismometer: design and test of a measurement system for marine seismology, Sensors, vol.12, issue.3, pp.3693-3719, 2012.

A. Marrel, B. Iooss, F. Van-dorpe, and E. Volkova, An efficient methodology for modeling complex computer codes with Gaussian processes, Comput. Stat. Data Anal, vol.52, issue.10, pp.4731-4744, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00239492

A. Mesgouez, S. Buis, G. Lefeuve-mesgouez, and G. Micolau, Use of global sensitivity analysis to assess the soil poroelastic parameter influence, Wave Motion, vol.72, pp.377-394, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01512234

Y. Mi, H. Zheng, and H. P. Lee, A domain decomposition method for stochastic analysis of acoustic fields with hybrid and localized uncertainties, Wave Motion, vol.83, pp.121-133, 2018.

C. L. Pekeris, Theory of propagation of explosive sound in shallow water, Geol Soc Am Mem, vol.27, pp.1-116, 1948.

S. Rahman, Wiener-Hermite polynomial expansion for multivariate Gaussian probability measures, J. Math. Anal. Appl, vol.454, issue.1, pp.303-334, 2017.

C. E. Rasmussen, Gaussian processes in machine learning, Advanced lectures on machine learning, pp.63-71

. Springer, , 2004.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer experiments, Statistical science, pp.409-423, 1989.

A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto et al., Variance-based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Comput. Phys. Commun, vol.181, issue.2, pp.259-270, 2010.

T. J. Santner, B. J. Williams, and W. I. Notz, The design and analysis of computer experiments, 2013.

E. Savin and B. Faverjon, Computation of higher-order moments of generalized polynomial chaos expansions, Int. J. Numer. Meth. Eng, vol.111, issue.12, pp.1192-1200, 2017.

R. Schöbi, B. Sudret, and J. Wiart, Polynomial-chaos-based kriging, Int. J. Uncertain. Quantif, vol.5, issue.2, 2015.

R. Schöbi, B. Sudret, and S. Marelli, Rare event estimation using polynomial-chaos kriging, ASCE ASME J. Risk Uncertain. Eng. Syst. A Civ. Eng, vol.3, issue.2, p.4016002, 2016.

I. M. Sobol, On the distribution of points in a cube and the approximate evaluation of integrals, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, vol.7, issue.4, pp.784-802, 1967.

I. M. Sobol, Sensitivity estimates for non-linear mathematical models, Mathematical Modeling and Computational Experiment, vol.1, issue.4, pp.407-414, 1993.

M. L. Stein, Interpolation of spatial data: some theory for kriging, 2012.

B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Syst. Safety, vol.93, issue.7, pp.964-979, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01432217

J. Tabrikian and J. L. Krolik, Robust maximum-likelihood source localization in an uncertain shallow-water waveguide, J. Acoust. Soc. Am, vol.101, issue.1, pp.241-249, 1997.

X. Wang, S. Khazaie, and P. Sagaut, Sound source localization in a randomly inhomogeneous medium using matched statistical moment method, J. Acoust. Soc. Am, vol.138, issue.6, pp.3896-3906, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01276517

X. Wang, S. Khazaie, L. Margheri, and P. Sagaut, Shallow water sound source localization using the iterative beamforming method in an image framework, J. Sound Vib, vol.395, pp.354-370, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01527615

X. Wang, S. Khazaie, and X. Chen, Linear approximation of underwater sound speed profile: Precision analysis in direct and inverse problems, Appl. Acoust, vol.140, pp.63-73, 2018.

X. Wang, S. Khazaie, D. Komatitsch, and P. Sagaut, Sound-source localization in range-dependent shallow-water environments using a four-layer model, IEEE J. Ocean. Eng, vol.44, issue.1, pp.220-228, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01702364