N. Mano and L. Edembe, Bilirubin oxidases in bioelectrochemistry: Features and recent findings, Biosens. Bioelectron, vol.50, pp.478-485, 2013.

L. Goff, A. Holzinger, M. Cosnier, and S. , Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells, Cell. Mol. Life Sci, vol.72, pp.941-952, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01651409

N. Mano and A. De-poulpiquet, O2 Reduction in Enzymatic Biofuel Cells, Chem. Rev, vol.118, pp.2392-2468, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02322769

J. A. Cracknell, K. A. Vincent, A. , and F. A. , Enzymes as Working or Inspirational Electrocatalysts for Fuel Cells and Electrolysis, Chem. Rev, vol.108, pp.2439-2461, 2008.

C. Léger and P. Bertrand, Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies, Chem. Rev, vol.108, pp.2379-2438, 2008.

K. Elouarzaki, D. Cheng, A. C. Fisher, and J. Lee, Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells, Nat Energy, vol.3, pp.574-581, 2018.

C. Walgama, A. Pathiranage, M. Akinwale, R. Montealegre, J. Niroula et al., Buckypaper-Bilirubin Oxidase Biointerface for Electrocatalytic Applications: Buckypaper Thickness, vol.2, pp.2229-2236, 2019.

L. Goff, A. Holzinger, and M. , Molecular engineering of the bio/nano-interface for enzymatic electrocatalysis in fuel cells, Sustain. Energ. Fuels, vol.2, pp.2555-2566, 2018.

S. Shleev, J. Tkac, A. Christenson, T. Ruzgas, A. I. Yaropolov et al., Direct electron transfer between copper-containing proteins and electrodes, Biosens. Bioelectron, vol.20, pp.2517-2554, 2005.

S. Shleev, A. El-kasmi, T. Ruzgas, and L. Gorton, Direct heterogeneous electron transfer reactions of bilirubin oxidase at a spectrographic graphite electrode, Electrochem. Comm, vol.6, pp.934-939, 2004.

S. Shleev, A. Jarosz-wilkolazka, A. Khalunina, O. Morozova, A. Yaropolov et al., Direct electron transfer reactions of laccases from different origins on carbon electrodes, Bioelectrochemistry, vol.67, pp.115-124, 2005.

M. Dagys, A. Lauryn?nas, D. Ratautas, J. Kulys, R. Vid?i?nait? et al., Oxygen electroreduction catalysed by laccase wired to gold nanoparticles via the trinuclear copper cluster, Energy & Environmental Science, vol.10, pp.498-502, 2017.

N. Lalaoui, M. Holzinger, A. Le-goff, and S. Cosnier, , 2016.

, Diazonium Functionalisation of Carbon Nanotubes for Specific Orientation of Multicopper Oxidases: Controlling Electron Entry Points and Oxygen Diffusion to the Enzyme, Chem. Eur. J, vol.22, pp.10494-10500

A. De-poulpiquet, C. H. Kjaergaard, J. Rouhana, I. Mazurenko, P. Infossi et al., Mechanism of Chloride Inhibition of Bilirubin Oxidases and Its Dependence on Potential and pH, ACS Catal, vol.7, pp.3916-3923, 2017.

C. H. Kjaergaard, F. Durand, F. Tasca, M. F. Qayyum, B. Kauffmann et al., Spectroscopic and Crystallographic Characterization of "Alternative Resting" and "Resting Oxidized" Enzyme Forms of Bilirubin FULL PAPER Oxidase: Implications for Activity and Electrochemical Behavior of Multicopper Oxidases, J. Am. Chem. Soc, vol.134, pp.5548-5551, 2012.

N. D. Yates, M. A. Fascione, and A. Parkin, Methodologies for "Wiring" Redox Proteins/Enzymes to Electrode Surfaces, Chemistry -A European Journal, vol.24, pp.12164-12182, 2018.

C. F. Blanford, R. S. Heath, A. , and F. A. , A stable electrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface, Chem. Commun, pp.1710-1712, 2007.

C. F. Blanford, C. E. Foster, R. S. Heath, A. , and F. A. , Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons, Faraday Discussions, vol.140, pp.319-335, 2008.

F. Giroud and S. D. Minteer, Anthracene-modified pyrenes immobilized on carbon nanotubes for direct electroreduction of O2 by laccase, Electrochemistry Communications, vol.34, pp.157-160, 2013.

M. T. Meredith, M. Minson, D. Hickey, K. Artyushkova, D. T. Glatzhofer et al., Anthracene-Modified Multi-Walled Carbon Nanotubes as Direct Electron Transfer Scaffolds for Enzymatic Oxygen Reduction, ACS Catal, vol.1, pp.1683-1690, 2011.

M. Bourourou, K. Elouarzaki, N. Lalaoui, C. Agnès, A. Le-goff et al., Supramolecular Immobilization of Laccase on Carbon Nanotube Electrodes Functionalized with (Methylpyrenylaminomethyl)anthraquinone for Direct Electron Reduction of Oxygen, Chem. Eur. J, vol.19, pp.9371-9375, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01653054

N. Lalaoui, A. Le-goff, M. Holzinger, M. Mermoux, and S. Cosnier, Wiring Laccase on Covalently Modified Graphene: Carbon Nanotube Assemblies for the Direct Bio-electrocatalytic Reduction of Oxygen, Chem. Eur. J, vol.21, pp.3198-3201, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01651430

N. Lalaoui, K. Elouarzaki, A. Le-goff, M. Holzinger, and S. Cosnier, Efficient direct oxygen reduction by laccases attached and oriented on pyrene-functionalized polypyrrole/carbon nanotube electrodes, Chem. Commun, vol.49, pp.9281-9283, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01652623

N. Lalaoui, R. David, H. Jamet, M. Holzinger, A. Le-goff et al., Hosting Adamantane in the Substrate Pocket of Laccase: Direct Bioelectrocatalytic Reduction of O2 on Functionalized Carbon Nanotubes, ACS Catal, vol.6, pp.4259-4264, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01644668

E. Nazaruk, K. Sadowska, J. F. Biernat, J. Rogalski, G. Ginalska et al., Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications, Anal. Bioanal. Chem, vol.398, pp.1651-1660, 2010.

M. Sosna, J. Chrétien, J. D. Kilburn, and P. N. Bartlett, , 2010.

, Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation, Phys. Chem. Chem. Phys, vol.12, pp.10018-10026

J. L. Bahr and J. M. Tour, Highly Functionalized Carbon Nanotubes Using in Situ Generated Diazonium Compounds, Chem. Mater, pp.3823-3824, 2001.

C. A. Dyke and J. M. Tour, Unbundled and Highly Functionalized Carbon Nanotubes from Aqueous Reactions, Nano Lett, vol.3, pp.1215-1218, 2003.

L. Goff, A. Moggia, F. Debou, N. Jegou, P. Artero et al., Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent coupling and ?-stacking interactions and their relevance to glucose bio-sensing, J. Electroanal. Chem, pp.57-63, 2010.
URL : https://hal.archives-ouvertes.fr/cea-01022790

I. Mateljak, E. Monza, M. F. Lucas, V. Guallar, O. Aleksejeva et al., Increasing Redox Potential, Redox Mediator Activity, and Stability in a Fungal Laccase by Computer-Guided Mutagenesis and Directed Evolution, ACS Catal, pp.4561-4572, 2019.

F. A. Al-lolage, P. N. Bartlett, S. Gounel, P. Staigre, and N. Mano, Site-Directed Immobilization of Bilirubin Oxidase for Electrocatalytic Oxygen Reduction, ACS Catal, vol.9, pp.2068-2078, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02110777

N. Lalaoui, P. Rousselot-pailley, V. Robert, Y. Mekmouche, R. Villalonga et al., Direct Electron Transfer between a Site-Specific Pyrene-Modified Laccase and Carbon Nanotube/Gold Nanoparticle Supramolecular Assemblies for Bioelectrocatalytic Dioxygen Reduction, ACS Catal, vol.6, pp.1894-1900, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01644589

D. Evrard, F. Lambert, C. Policar, V. Balland, and B. Limoges, , 2008.

, Electrochemical Functionalization of Carbon Surfaces by Aromatic Azide or Alkyne Molecules: A Versatile Platform for Click Chemistry, Chem. Eur. J, vol.14, pp.9286-9291

A. Klonowska, C. Gaudin, M. Asso, A. Fournel, M. Réglier et al., LAC3, a new low redox potential laccase from Trametes sp. strain C30 obtained as a recombinant protein in yeast, Enzyme and Microbial Technology, vol.36, pp.34-41, 2005.

Y. Mekmouche, S. Zhou, A. M. Cusano, E. Record, A. Lomascolo et al., Gram-scale production of a basidiomycetous laccase in Aspergillus niger, Journal of Bioscience and Bioengineering, vol.117, pp.25-27, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268150

L. Schneider, Y. Mekmouche, P. Rousselot-pailley, A. J. Simaan, V. Robert et al., Visible-Light-Driven Oxidation of Organic Substrates with Dioxygen Mediated by a, /Laccase System. ChemSusChem, vol.8, issue.2+, pp.3048-3051, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01475419

V. Robert, E. Monza, L. Tarrago, F. Sancho, A. De-falco et al., Probing the Surface of a Laccase for Clues towards the Design of Chemo-Enzymatic Catalysts, vol.82, pp.831-831, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02089386

J. M. Mcfarland and M. B. Francis, Reductive Alkylation of Proteins Using Iridium Catalyzed Transfer Hydrogenation, J. Am. Chem. Soc, vol.127, pp.13490-13491, 2005.

A. Mesnage, X. Lefèvre, P. Jégou, G. Deniau, and S. Palacin, Spontaneous Grafting of Diazonium Salts: Chemical Mechanism on Metallic Surfaces, Langmuir, vol.28, pp.11767-11778, 2012.
URL : https://hal.archives-ouvertes.fr/cea-00960572

S. Gentil, S. M. Che-mansor, H. Jamet, S. Cosnier, C. Cavazza et al., Oriented Immobilization of [NiFeSe] Hydrogenases on Covalently and Noncovalently Functionalized Carbon Nanotubes for H2/Air Enzymatic Fuel Cells, ACS Catal, pp.3957-3964, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01944392

M. Seifert, M. T. Rinke, and H. Galla, Characterization of Streptavidin Binding to Biotinylated, Binary Self-Assembled Thiol Monolayers-Influence of Component Ratio and Solvent, Langmuir, vol.26, pp.6386-6393, 2010.

V. Balland, C. Hureau, A. M. Cusano, Y. Liu, T. Tron et al., Oriented immobilization of a fully active monolayer of histidine-tagged recombinant laccase on modified gold electrodes, Chem. Eur. J, vol.14, pp.7186-7192, 2008.

N. Lalaoui, A. Le-goff, M. Holzinger, and S. Cosnier, Fully Oriented Bilirubin Oxidase on Porphyrin-Functionalized Carbon Nanotube Electrodes for Electrocatalytic Oxygen Reduction, Chem. Eur. J, vol.21, pp.16868-16873, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01651047

S. V. Hexter, F. Grey, T. Happe, V. Climent, A. et al., Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases, Proc. Natl. Acad. Sci, vol.109, pp.11516-11521, 2012.

S. V. Hexter, T. F. Esterle, A. , and F. A. , A unified model for surface electrocatalysis based on observations with enzymes, Phys. Chem. Chem. Phys, vol.16, pp.11822-11833, 2014.

C. Léger, A. K. Jones, S. P. Albracht, A. , and F. A. , Effect of a Dispersion of Interfacial Electron Transfer Rates on Steady State Catalytic Electron Transport in [NiFe]-hydrogenase and Other Enzymes, J. Phys. Chem. B, vol.106, pp.13058-13063, 2002.

C. Gutiérrez-sánchez, M. Pita, C. Vaz-domínguez, S. Shleev, D. Lacey et al., Gold Nanoparticles as Electronic Bridges for Laccase-Based Biocathodes, J. Am. Chem. Soc, vol.134, pp.17212-17220, 2012.

E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera et al.,

, Accepted Manuscript Chemistry -A European Journal This article is protected by copyright. All rights reserved

L. Tian, Copper Active Sites in Biology, Chem. Rev, vol.114, pp.3659-3853, 2014.

S. M. Jones and E. I. Solomon, Electron transfer and reaction mechanism of laccases, Cell. Mol. Life Sci, vol.72, pp.869-883, 2015.

O. Schlesinger, M. Pasi, R. Dandela, M. M. Meijler, A. et al., Electron transfer rate analysis of a site-specifically wired copper oxidase, Phys. Chem. Chem. Phys, vol.20, pp.6159-6166, 2018.

T. Lazarides, I. V. Sazanovich, A. J. Simaan, M. C. Kafentzi, M. Delor et al., Visible Light-Driven O2 Reduction by a Porphyrin-Laccase System, J. Am. Chem. Soc, vol.135, pp.3095-3103, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02091417