R. Houben and P. J. Dodd, The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling, PLoS Med, vol.13, p.1002152, 2016.

A. Jagger, S. Reiter-karam, Y. Hamada, and H. Getahun, National policies on the management of latent tuberculosis infection: review of 98 countries, Bull World Health Organ, vol.96, pp.173-184, 2018.

A. O'garra, P. S. Redford, F. W. Mcnab, C. I. Bloom, R. J. Wilkinson et al., The immune response in tuberculosis, Annu Rev Immunol, vol.31, pp.475-527, 2013.

C. H. Liu, H. Liu, and B. Ge, Innate immunity in tuberculosis: host defense vs. pathogen evasion, Cell Mol Immunol, vol.14, pp.963-75, 2017.

S. Miranda, M. Breiman, A. Allain, S. Deknuydt, F. Altare et al., The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria?, Clin Dev Immunol, p.139127, 2012.

J. L. Flynn and J. Chan, Immunology of tuberculosis, Annu Rev Immunol, vol.19, pp.93-129, 2001.

J. M. Davis and L. Ramakrishnan, The role of the granuloma in expansion and dissemination of early tuberculous infection, Cell, vol.136, pp.37-49, 2009.

A. Ruan, Q. Liu, Q. Zhang, and W. , Updates on the risk factors for latent tuberculosis reactivation and their managements, Emerg Microbes Infect, vol.5, p.10, 2016.

A. Ahmed, S. Rakshit, and A. Vyakarnam, HIV-TB co-infection: mechanisms that drive reactivation of Mycobacterium tuberculosis in HIV infection, Oral Dis, pp.53-60, 2016.

J. Liu, J. Yan, Q. Wan, Q. Ye, and Y. Huang, The risk factors for tuberculosis in liver or kidney transplant recipients, BMC Infect Dis, vol.14, p.387, 2014.

P. Kone?ný, R. Ehrlich, M. Gulumian, and M. Jacobs, Immunity to the dual threat of silica exposure and Mycobacterium tuberculosis, Front Immunol, vol.9, p.3069, 2018.

M. R. Reichler, A. Khan, T. R. Sterling, H. Zhao, J. Moran et al., Risk and timing of tuberculosis among close contacts of persons with infectious tuberculosis, J Infect Dis, vol.218, pp.1000-1008, 2018.

I. Solovic, M. Sester, J. J. Gomez-reino, H. L. Rieder, S. Ehlers et al., The risk of tuberculosis related to tumour necrosis factor antagonist therapies: a TBNET consensus statement, Eur Respir J, vol.36, pp.1185-206, 2010.

M. M. Hussein, J. M. Mooij, and H. Roujouleh, Tuberculosis and chronic renal disease, Semin Dial, vol.16, pp.38-44, 2003.

M. Gonzalez-juarrero, O. C. Turner, J. Turner, M. P. Brooks, J. V. Orme et al., Temporal and spatial arrangement of lymphocytes within lung granulomas induced by aerosol infection with Mycobacterium tuberculosis, Infect Immun, vol.69, pp.1722-1730, 2001.

M. Puissegur, C. Botanch, J. Duteyrat, G. Delsol, C. Caratero et al., An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells, Cell Microbiol, vol.6, pp.423-456, 2004.

D. G. Russell, P. Cardona, M. Kim, S. Allain, and F. Altare, Foamy macrophages and the progression of the human tuberculosis granuloma, Nat Immunol, vol.10, pp.943-951, 2009.

A. M. Cooper, K. D. Mayer-barber, and A. Sher, Role of innate cytokines in mycobacterial infection, Mucosal Immunol, vol.4, pp.252-60, 2011.

J. Daniel, C. Deb, V. S. Dubey, T. D. Sirakova, B. Abomoelak et al., Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture, J Bacteriol, vol.186, pp.5017-5047, 2004.

C. Deb, J. Daniel, T. D. Sirakova, B. Abomoelak, V. S. Dubey et al., A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis, J Biol Chem, vol.281, pp.3866-75, 2006.

P. Santucci, F. Bouzid, N. Smichi, I. Poncin, L. Kremer et al., Experimental models of foamy macrophages and approaches for dissecting the mechanisms of lipid accumulation and consumption during dormancy and reactivation of tuberculosis, Front Cell Infect Microbiol, vol.6, p.122, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455789

D. O. Co, L. H. Hogan, S. Kim, and M. Sandor, Mycobacterial granulomas: keys to a long-lasting host-pathogen relationship, Clin Immunol Orlando Fla, vol.113, pp.130-136, 2004.

F. Binder, M. Hayakawa, M. Choo, Y. Sano, and J. M. Park, Interleukin-4-induced ?catenin regulates the conversion of macrophages to multinucleated giant cells, Mol Immunol, vol.54, pp.157-63, 2013.

F. Coury, N. Annels, A. Rivollier, S. Olsson, A. Santoro et al., Langerhans cell histiocytosis reveals a new IL-17A-dependent pathway of dendritic cell fusion, Nat Med, vol.14, pp.81-88, 2008.

A. K. Mcnally and J. M. Anderson, ?1 and ?2 integrins mediate adhesion during macrophage fusion and multinucleated foreign body giant cell formation, Am J Pathol, vol.160, issue.10, pp.64882-64883, 2002.

P. Shrivastava and T. Bagchi, IL-10 modulates in vitro multinucleate giant cell formation in human tuberculosis, PLoS ONE, vol.8, p.77680, 2013.

L. E. Swaim, L. E. Connolly, H. E. Volkman, O. Humbert, D. E. Born et al., Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity, Infect Immun, vol.74, pp.6108-6125, 2006.

S. W. Chensue, K. Warmington, J. H. Ruth, N. Lukacs, and S. L. Kunkel, Mycobacterial and schistosomal antigen-elicited granuloma formation in IFN-gamma and IL-4 knockout mice: analysis of local and regional cytokine and chemokine networks, J Immunol Baltim Md, vol.1950, pp.3565-73, 1997.

G. Lay, Y. Poquet, P. Salek-peyron, M. Puissegur, C. Botanch et al., Langhans giant cells from M. tuberculosis-induced human granulomas cannot mediate mycobacterial uptake, J Pathol, vol.211, pp.76-85, 2007.

A. Delaby, L. Espinosa, C. Lépolard, C. Capo, and J. Mège, 3D reconstruction of granulomas from transmitted light images implemented for longtime microscope applications, J Immunol Methods, vol.360, pp.10-19, 2010.

D. Faugaret, B. Amara, A. Alingrin, J. Daumas, A. Delaby et al., Granulomatous response to Coxiella burnetii, the agent of Q fever: the lessons from gene expression analysis, Front Cell Infect Microbiol, vol.4, p.172, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01771477

J. Alingrin, B. Coiffard, J. Textoris, P. Belenotti, A. Daumas et al., Impaired granuloma formation in sepsis: impact of monocytopenia, PLoS ONE, vol.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01466886

W. F. Kean and W. W. Buchanan, The use of NSAIDs in rheumatic disorders 2005: a global perspective, Inflammopharmacology, vol.13, pp.343-70, 2005.

J. M. Tufariello, J. Chan, and J. L. Flynn, Latent tuberculosis: mechanisms of host and bacillus that contribute to persistent infection, Lancet Infect Dis, vol.3, pp.578-90, 2003.

V. Kindler, A. P. Sappino, G. E. Grau, P. F. Piguet, and P. Vassalli, The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection, Cell, vol.56, pp.731-771, 1989.

D. R. Roach, A. Bean, C. Demangel, M. P. France, H. Briscoe et al., TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection, J Immunol, vol.168, pp.4620-4627, 2002.

N. Kapoor, S. Pawar, T. D. Sirakova, C. Deb, W. L. Warren et al., Human granuloma in vitro model, for TB dormancy and resuscitation, PLoS ONE, vol.8, p.53657, 2013.

R. Fleischmann, Safety and efficacy of disease-modifying antirheumatic agents in rheumatoid arthritis and juvenile rheumatoid arthritis, Expert Opin Drug Saf, vol.2, pp.347-65, 2003.

R. Fleischmann, I. Iqbal, P. Nandeshwar, and A. Quiceno, Safety and efficacy of disease-modifying anti-rheumatic agents: focus on the benefits and risks of etanercept, Drug Saf, vol.25, pp.173-97, 2002.

J. Keane, G. S. Wise, R. P. Mirabile-levens, E. Kasznica, J. Schwieterman et al., Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent, N Engl J Med, vol.345, pp.1098-104, 2001.

R. S. Wallis, M. Broder, J. Wong, and D. Beenhouwer, Granulomatous infections due to tumor necrosis factor blockade: correction, Clin Infect Dis Off Publ Infect Dis Soc Am, vol.39, pp.1254-1259, 2004.

S. Ehlers, Tumor necrosis factor and its blockade in granulomatous infections: differential modes of action of infliximab and etanercept?, Clin Infect Dis, vol.41, pp.199-203, 2005.

L. Tsenova, P. O'brien, J. Holloway, B. Peixoto, P. Soteropoulos et al., Etanercept exacerbates inflammation and pathology in a rabbit model of active pulmonary tuberculosis, J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res, vol.34, pp.716-742, 2014.

E. Guirado, U. Mbawuike, T. L. Keiser, J. Arcos, A. K. Azad et al., Characterization of host and microbial determinants in individuals with latent tuberculosis infection using a human granuloma model. mBio, vol.6, pp.2537-2551, 2015.

A. Honstettre, E. Ghigo, A. Moynault, C. Capo, R. Toman et al., Lipopolysaccharide from Coxiella burnetii is involved in bacterial phagocytosis, filamentous actin reorganization, and inflammatory responses through Toll-like receptor 4, J Immunol Baltim Md, vol.1950, pp.3695-703, 2004.

L. M. Bang and G. M. Keating, Adalimumab: a review of its use in rheumatoid arthritis, BioDrugs Clin Immunother Biopharm Gene Ther, vol.18, pp.121-160, 2004.

E. Keystone and B. Haraoui, Adalimumab therapy in rheumatoid arthritis, Rheum Dis Clin North Am, vol.30, pp.349-64, 2004.

E. W. St-clair, Infliximab treatment for rheumatic disease: clinical and radiological efficacy, Ann Rheum Dis, pp.67-76, 2002.

S. Mezouar, J. Vitte, L. Gorvel, B. Amara, A. Desnues et al., Mast cell cytonemes as a defense mechanism against Coxiella burnetii, mBio, vol.10, pp.2669-2687, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02262531

V. Parthasarathy, F. Martin, A. Higginbottom, H. Murray, G. W. Moseley et al., Distinct roles for tetraspanins CD9, CD63, and CD81 in the formation of multinucleated giant cells, Immunology, vol.127, pp.237-285, 2009.

C. Vérollet, Y. M. Zhang, L. Cabec, V. Mazzolini, J. Charrière et al., HIV-1 Nef triggers macrophage fusion in a p61Hck-and protease-dependent manner, J Immunol, vol.184, pp.7030-7039, 2010.

M. Peric, S. Koglin, Y. Dombrowski, K. Groß, E. Bradac et al., Vitamin D analogs differentially control antimicrobial peptide/"alarmin"expression in psoriasis, PLoS ONE, vol.4, p.6340, 2009.

H. R. Maltesen, C. H. Nielsen, C. S. Dalbøge, and B. Baslund, Methylprednisolone prevents tumour necrosis factor-?-dependent multinucleated giant cell formation, Rheumatology, vol.49, pp.2037-2079, 2010.

T. Takashima, K. Ohnishi, I. Tsuyuguchi, and S. Kishimoto, Differential regulation of formation of multinucleated giant cells from concanavalin A-stimulated human blood monocytes by IFN-gamma and IL-4, J Immunol Baltim Md, vol.1950, pp.3002-3012, 1993.

F. Tubach, D. Salmon, P. Ravaud, Y. Allanore, P. Goupille et al., Risk of tuberculosis is higher with anti-tumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy: the threeyear prospective French Research Axed on Tolerance of Biotherapies registry, Arthritis Rheum, vol.60, pp.1884-94, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00400633

J. L. Flynn, M. M. Goldstein, J. Chan, K. J. Triebold, K. Pfeffer et al., Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice, Immunity, vol.2, pp.561-72, 1995.

J. Harris and J. Keane, How tumour necrosis factor blockers interfere with tuberculosis immunity, Clin Exp Immunol, vol.161, pp.1-9, 2010.

A. I. Catrina, C. Trollmo, A. Klint, E. Engstrom, M. Lampa et al., Evidence that anti-tumor necrosis factor therapy with both etanercept and infliximab induces apoptosis in macrophages, but not lymphocytes, in rheumatoid arthritis joints: extended report, Arthritis Rheum, vol.52, pp.61-72, 2005.

H. Mitoma, T. Horiuchi, H. Tsukamoto, and N. Ueda, Molecular mechanisms of action of anti-TNF-? agents -Comparison among therapeutic TNF-? antagonists, Cytokine, vol.101, pp.56-63, 2018.

C. Shen, G. V. Assche, S. Colpaert, P. Maerten, K. Geboes et al., Adalimumab induces apoptosis of human monocytes: a comparative study with infliximab and etanercept, Aliment Pharmacol Ther, vol.21, pp.251-259, 2005.

P. Belenotti, A. Daumas, B. Coiffard, C. Capo, E. Ghigo et al., Rôle des inhibiteurs du TNF sur la formation in vitro de granulome, Rev Médecine Interne, vol.35, p.37, 2014.

Y. Cavalcanti, M. Brelaz, J. K. Neves, A. L. De, J. C. Ferraz et al., Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary tuberculosis, Pulm Med, p.745483, 2012.

S. J. Sasindran and J. B. Torrelles, Mycobacterium tuberculosis infection and inflammation: what is beneficial for the host and for the bacterium? Front Microbiol, vol.2, 2011.

A. E. Abdalla, N. Lambert, X. Duan, and J. Xie, Interleukin-10 family and tuberculosis: an old story renewed, Int J Biol Sci, vol.12, pp.710-717, 2016.

N. E. Aerts, D. Knop, K. J. Leysen, J. Ebo, D. G. Bridts et al., Increased IL-17 production by peripheral T helper cells after tumour necrosis factor blockade in rheumatoid arthritis is accompanied by inhibition of migration-associated chemokine receptor expression, Rheumatol Oxf Engl, vol.49, pp.2264-72, 2010.

H. G. Evans, U. Roostalu, G. J. Walter, N. J. Gullick, K. S. Frederiksen et al., TNF-? blockade induces IL-10 expression in human CD4 + T cells, Nat Commun, vol.5, p.3199, 2014.

P. Urbano, R. Aguirre-gamboa, A. Ashikov, B. Van-heeswijk, A. Krippner-heidenreich et al., TNF-?-induced protein 3 (TNFAIP3)/A20 acts as a master switch in TNF-? blockade-driven IL-17A expression, J Allergy Clin Immunol, vol.142, pp.517-546, 2018.

C. Kallenberg, Pathophysiology of ANCA-associated small vessel vasculitis, Curr Rheumatol Rep, vol.12, pp.399-405, 2010.

E. Lockhart, A. M. Green, and J. L. Flynn, IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection, J Immunol Baltim Md, vol.1950, pp.4662-4671, 2006.

Y. Okamoto-yoshida, M. Umemura, A. Yahagi, R. L. O'brien, K. Ikuta et al., Essential role of IL-17A in the formation of a mycobacterial infectioninduced granuloma in the lung, J Immunol Baltim Md, vol.1950, pp.4414-4436, 2010.

R. Gopal, L. Monin, S. Slight, U. Uche, E. Blanchard et al., Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection, PLoS Pathog, vol.10, p.1004099, 2014.

D. J. Cua and C. M. Tato, Innate IL-17-producing cells: the sentinels of the immune system, Nat Rev Immunol, vol.10, pp.479-89, 2010.