G. J. Dick, The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped 176 locally, Nat Rev Microbiol, vol.17, pp.271-283, 2019.

J. Mcnichol, H. Stryhanyuk, S. P. Sylva, F. Thomas, N. Musat et al., , p.178

, Primary productivity below the seafloor at deep-sea hot springs, P Natl Acad Sci, vol.115, p.179, 2018.

L. B. Nadine, M. Yucel, A. Das, S. M. Sievert, and P. R. Girguis, Hydrothermal energy transfer and 181 organic carbon production at the deep seafloor, Frontiers in Marine Science, vol.5, p.531, 2018.

J. Ding, Y. Zhang, H. Wang, H. Jian, H. Leng et al., Microbial Community Structure of 183

, Deep-sea Hydrothermal Vents on the Ultraslow Spreading Southwest Indian Ridge

. Microbiol, , vol.8, p.1012, 2017.

H. L. Cao, Y. Wang, O. O. Lee, X. Zeng, Z. Z. Shao et al., Microbial Sulfur Cycle in Two, p.186

, Hydrothermal Chimneys on the Southwest Indian Ridge, p.5, 2014.

R. Lakhal, N. Pradel, A. Postec, B. Ollivier, J. L. Cayol et al., , p.188

. Crassaminicella-profunda-gen.-nov, an anaerobic marine bacterium isolated from 189 deep-sea sediments, Int J Syst Evol Microbiol, vol.65, pp.3097-3102, 2015.

G. B. Slobodkina, T. V. Kolganova, T. P. Tourova, N. A. Kostrikina, C. Jeanthon et al.,

A. I. Bonch-osmolovskaya and . Slobodkin, Clostridium tepidiprofundi sp. nov., a moderately 192 thermophilic bacterium from a deep-sea hydrothermal vent, Int J Syst Evol Microbiol, vol.58, p.193, 2008.

S. L'haridon, M. L. Miroshnichenko, N. A. Kostrikina, B. J. Tindall, S. Spring et al.,

E. A. Stackebrandt, C. Bonch-osmolovskaya, and . Jeanthon, Vulcanibacillus modesticaldus gen. nov, p.196
URL : https://hal.archives-ouvertes.fr/hal-00562352

, a strictly anaerobic, nitrate-reducing bacterium from deep-sea hydrothermal vents, Int J, vol.197

, Syst Evol Microbiol, vol.56, pp.1047-1053, 2006.

P. R. Norris, D. A. Clark, J. P. Owen, and S. Waterhouse, Characteristics of Sulfobacillus acidophilus, p.199

, sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria, pp.775-783, 1996.

S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman et al., Canu: scalable 202 and accurate long-read assembly via adaptive k-mer weighting and repeat separation, Genome Res, pp.722-736, 2017.

M. Galperin, K. Makarova, Y. Wolf, and E. Koonin, Expanded microbial genome coverage and 205 improved protein family annotation in the COG database, Nucleic Acids, vol.43, pp.261-269, 2015.

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler et al.,

S. S. Dolinski, J. T. Dwight, M. A. Eppig, D. P. Harris, L. Hill et al., , p.209

J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, G. Sherlock et al., Gene 210 Ontology: tool for the unification of biology, vol.25, pp.25-29, 2000.

M. Kanehisa, S. Goto, Y. Sato, M. Kawashima, M. Furumichi et al., Data, information, 212 knowledge and principle: back to metabolism in KEGG, Nucleic Acids Res, vol.42, pp.199-205, 2014.

E. Rastelli, C. Corinaldesi, A. Dell'anno, M. Tangherlini, E. Martorelli et al.,

M. Chiocci, R. Lo-martire, and . Danovaro, High potential for temperate viruses to drive carbon cycling 215 in chemoautotrophy-dominated shallow-water hydrothermal vents, Environmental microbiology, vol.216, pp.4432-4446, 2017.

H. G. Castelan-sanchez, I. Lopez-rosas, W. A. Garcia-suastegui, R. Peralta, and A. D. Dobson, , p.218

R. A. Batista-garcia and S. Davila-ramos, Extremophile deep-sea viral communities from 219 hydrothermal vents: Structural and functional analysis, Mar Genomics, vol.46, pp.16-28, 2019.

T. He, H. Li, and X. Zhang, Deep-sea hydrothermal vent viruses compensate for microbial 221 metabolism in virus-host interactions, Mbio, vol.8, pp.893-00817, 2017.

G. P. Dubey, A. Narayan, A. R. Mattoo, G. P. Singh, R. K. Kurupati et al., , p.223

R. B. Baweja, S. Basu-modak, and Y. Singh, Comparative genomic study of spo0E family genes and 224 elucidation of the role of Spo0E in Bacillus anthracis, Archives of Microbiology, vol.191, p.225, 2009.