C. J. Weschler and N. Carslaw, Indoor Chemistry, Environ. Sci. Technol, vol.52, issue.5, pp.2419-2428, 2018.

S. Gligorovski and J. P. Abbatt, An indoor chemical cocktail, vol.359, issue.6376, pp.632-633, 2018.

S. Gligorovski, X. Li, and H. Herrmann, Indoor (Photo) chemistry in China and Resulting Health Eff ects, Environ. Sci. Technol, vol.52, pp.10909-10910, 2018.

W. S. Beckett, M. B. Russi, A. D. Haber, R. M. Rivkin, J. R. Sullivan et al., Eff ect of Nitrous Acid on Lung Function in Asthmatics: A Chamber Study, vol.103, pp.372-375, 1995.

T. R. Rasmussen, M. Brauer, and S. Kjaergaard, Eff ects of nitrous acid exposure on human mucous membranes, Am. J. Respir. Crit. Care Med, vol.151, pp.1504-1511, 1995.

P. L. Hanst, Air pollution measurement by fourier transform spectroscopy, Appl. Opt, vol.17, pp.1360-1366, 1978.

J. N. Pitts, D. Grosjean, K. Van-cauwenberghe, J. P. Schmid, and D. R. Fitz, Photooxidation of aliphatic amines under simulated atmospheric conditions: Formation of nitrosamines, nitramines, amides and photochemical oxidant, Environ. Sci. Technol, vol.12, pp.946-953, 1978.

M. Sleiman, L. A. Gundel, J. F. Pankow, P. Jacob, B. C. Singer et al., Formation of carcinogens indoors by surface-mediated reactions of nicotine with nitrous acid, leading to potential thirdhand smoke hazards, Proc. Natl. Acad. Sci. U. S. A, issue.15, pp.6576-6581, 2010.

Z. Ve?e?a and P. K. Dasgupta, Indoor Nitrous Acid Levels. Production of Nitrous Acid from Open-Flame Sources, Int. J. Environ. Anal. Chem, vol.56, pp.311-316, 1994.

A. Febo and C. Perrino, Prediction and experimental evidence for high air concentration of nitrous acid in indoor environments, Atmos. Environ, vol.25, pp.1055-1061, 1991.

N. A. Katsanos, F. De, A. Santis, F. Cordoba, D. Roubani-kalantzopoulou et al., Corrosive eff ects from the deposition of gaseous pollutants on surfaces of cultural and artistic value inside museums, J. Hazard. Mater, vol.64, issue.1, pp.21-36, 1999.

J. D. Spengler, M. Brauer, J. M. Samet, and W. E. Lambert, Environ. Sci. Technol, vol.27, pp.841-845, 1993.

P. K. Simon and P. K. Dasgupta, Continuous automated measurement of gaseous nitrous and nitric acids and particulate nitrite and nitrate, Environ. Sci. Technol, vol.29, pp.1534-1541, 1995.

K. Lee, J. Xue, A. S. Geyh, H. Özkaynak, B. P. Leaderer et al., Nitrous Acid, nitrogen dioxide, and ozone concentrations in residential environments, Environ. Health Perspect, vol.110, pp.145-149, 2002.

M. I. Khoder, Nitrous acid concentrations in homes and offices in residential areas in Greater Cairo, J. Environ. Monit, vol.4, pp.573-578, 2002.

S. S. Park and S. Y. Cho, Performance Evaluation of an In Situ Nitrous Acid Measurement System and Continuous Measurement of Nitrous Acid in an Indoor Environment, J. Air Waste Manage. Assoc, vol.60, pp.1434-1442, 2012.

E. Alvarez, D. Amedro, C. , S. Gligorovski, C. Schoemacker et al., Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid, Proc. Natl. Acad. Sci. U. S. A, issue.33, pp.13294-13299, 2013.

S. Zhou, C. J. Young, T. C. Vandenboer, S. F. Kowal, and T. F. Kahan, Time-Resolved Measurements of Nitric Oxide, Nitrogen Dioxide, and Nitrous Acid in an Occupied New York Home, Environ. Sci. Technol, issue.15, pp.8355-8364, 2018.

F. Sakamaki, S. Hatakeyama, and H. Akimoto, Formation of nitrous acid and nitric oxide in the heterogeneous dark reaction of nitrogen dioxide and water vapour in a smog chamber, Int. J. Chem. Kinet, vol.15, pp.1013-1029, 1983.

K. A. Ramazan, D. Syomin, and B. J. Finlayson-pitts, The photochemical production of HONO during the heterogeneous hydrolysis of NO2, Phys. Chem. Chem. Phys, vol.6, issue.14, pp.3836-3843, 2004.

K. A. Ramazan, L. M. Wingen, Y. Miller, G. M. Chaban, R. B. Gerber et al., New Experimental and Theoretical Approach to the Heterogeneous Hydrolysis of NO2: Key Role of Molecular Nitric Acid and Its Complexes, J. Phys. Chem. A, vol.110, issue.21, pp.6886-6897, 2006.

B. J. Finlayson-pitts, L. M. Wingen, A. L. Sumner, D. Syomin, and K. A. Ramazan, The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: An integrated mechanism, Phys. Chem. Chem. Phys, vol.5, pp.223-242, 2003.

E. Gomez-alvarez, M. Sörgel, S. Gligorovski, S. Bassil, V. Bartolomei et al., Light-induced nitrous acid (HONO) production from NO2 heterogeneous reactions on household chemicals, Atmos. Environ, vol.95, pp.391-399, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01456417

V. Bartolomei, M. Sorgel, S. Gligorovski, E. Gomez-alvarez, A. Gandolfo et al., Formation of indoor nitrous acid (HONO) by light-induced NO2 heterogeneous reactions with white wall paint, Environ. Sci. Pollut. Res, vol.21, pp.9259-9269, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01455279

A. Gandolfo, V. Bartolomei, E. Gomez-alvarez, S. Tlili, S. Gligorovski et al., The eff ectiveness of indoor photocatalytic paints on NO x and HONO levels, Appl. Catal., B, pp.84-90, 2015.

A. Gandolfo, L. Rouyer, H. Wortham, and S. Gligorovski, The in uence of wall temperature on NO2 removal and HONO levels released by indoor photocatalytic paints, Appl. Catal, vol.209, pp.429-436, 2017.

S. Gligorovski, Nitrous acid (HONO): An emerging indoor pollutant, J. Photochem. Photobiol., A, vol.314, pp.1-5, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01436746

X. Li, S. Gligorovski, and H. Herrmann, Underestimated contribution of HONO to indoor OH radicals: an emerging concern, Sci. Bull, vol.63, pp.1383-1384, 2018.

A. Gandolfo, V. Gligorovski, V. Bartolomei, S. Tlili, E. Gomez-alvarez et al., Spectrally resolved actinic ux and photolysis frequency of key species within indoor environment, Build. Environ, vol.109, pp.50-57, 2016.

M. Blocquet, F. Guo, M. Mendez, M. Ward, S. Coudert et al., Impact of the spectral and spatial properties of natural light on indoor gas-phase chemistry: Experimental and modeling study, Indoor Air, vol.28, pp.426-440, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02322107

S. F. Kowal, S. R. Allen, and T. F. Kahan, Wavelength-Resolved Photon Fluxes of Indoor Light Sources: Implications for HO x Production, Environ. Sci. Technol, issue.18, pp.10423-10430, 2017.

J. Kleff-mann, Wavelength-Resolved Photon Fluxes of Indoor Light Sources: Tara F

. Kahan, Implications for HO x Production, Environ. Sci. Technol, vol.52, pp.11964-11965, 2018.

T. F. Kahan, Wavelength-Resolved Photon Fluxes of Indoor Light Sources: Implications for HO x Production, Environ. Sci. Technol, vol.52, pp.11966-11967, 2018.

H. Schwartz-narbonne, S. Jones, D. Helen, and J. Donaldson, Indoor Lighting Releases Gas Phase Nitrogen Oxides From Indoor Painted Surfaces, Environ. Sci. Technol. Lett, vol.6, issue.2, pp.92-97, 2019.

N. Carslaw, A new detailed chemical model for indoor air pollution, Atmos. Environ, vol.41, pp.1164-1179, 2007.

S. Gligorovski, R. Strekowski, S. Barbati, and D. Vione, The environmental implications of hydroxyl radical (OH), Chem. Rev, issue.24, pp.13051-13092, 2015.

S. Gligorovski and C. J. Weschler, The oxidative capacity of indoor atmospheres, Environ. Sci. Technol, vol.47, pp.13905-13906, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01456543

H. Schwartz-narbonne, C. Wang, S. Zhou, J. P. Abbatt, and J. Faust, Heterogeneous chlorination of squalene and oleic acid, Environ. Sci. Technol, vol.53, issue.3, pp.1217-1224, 2019.

C. K. Borrowman, S. Zhou, T. E. Burrow, and J. P. Abbatt, Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds, Phys. Chem. Chem. Phys, vol.18, pp.205-212, 2016.

N. Borduas, J. P. Abbatt, J. G. Murphy, S. So, and G. Silva, Gas-Phase Mechanisms of the Reactions of Reduced Organic Nitrogen Compounds with OH Radicals, Environ. Sci. Technol, vol.50, pp.11723-11734, 2016.

S. Zhou, M. W. Forbes, Y. Katrib, and J. P. Abbatt, Rapid Oxidation of Skin Oil by Ozone, Environ. Sci. Technol. Lett, vol.3, pp.170-174, 2016.

N. Carslaw, L. Fletcher, D. Heard, T. Ingham, and H. Walker, Signi cant OH production under surface cleaning and air cleaning conditions: impact on indoor air quality, Indoor Air, vol.27, issue.6, pp.1091-1100, 2017.

J. N. Pitts, T. J. Wallington, H. W. Biermann, and A. M. Winer, Identi cation and Measurement of Nitrous Acid in an Indoor Environment, Atmos. Environ, vol.19, pp.763-767, 1985.

S. S. Park, J. H. Hong, J. H. Lee, Y. J. Kim, S. Y. Cho et al., Investigation of nitrous acid concentration in an indoor environment using an in situ monitoring system, Atmos. Environ, issue.27, pp.6586-6596, 2008.

J. Stutz, H. Oh, S. I. Whitlow, C. Anderson, J. E. Dibb et al., Simultaneous DOAS and mist-chamber IC measurements of HONO, Atmos. Environ, vol.44, pp.4090-4098, 2010.

J. P. Pinto, J. Dibb, B. H. Lee, B. Rappenglück, E. C. Wood et al., Intercomparison of eld measurements of nitrous acid (HONO) during the SHARP campaign, J. Geophys. Res.: Atmos, vol.119, pp.5583-5601, 2014.

C. W. Spicer, I. H. Billick, and Y. Yanagisawa, Nitrous Acid Interference with Passive NO2 Measurement Methods and the Impact on Indoor NO2 Data, vol.11, pp.156-161, 2001.

J. Heland, J. Kleff-mann, R. Kurtenbach, and P. Wiesen, A New Instrument To Measure Gaseous Nitrous Acid (HONO) in the Atmosphere, Environ. Sci. Technol, vol.35, pp.3207-3212, 2001.

J. Kleff-mann, J. Heland, R. Kurtenbach, J. C. Lorzer, and P. Wiesen, A New Instrument (LOPAP) for the Detection of Nitrous Acid (HONO), vol.9, pp.48-54, 2002.

G. Villena, I. Bejan, R. Kurtenbach, P. Wiesen, and J. Kleff-mann, Interferences of commercial NO2 instruments in the urban atmosphere and in a smog chamber, Atmos. Meas. Tech, vol.5, pp.149-159, 2012.

W. Gao, G. B. Tan, Y. Hong, M. Li, H. Q. Nian et al., Development of portable single photon ionization time-of-ight mass spectrometer combined with membrane inlet, Int. J. Mass Spectrom, vol.334, pp.8-12, 2013.

L. A. Wallace, S. J. Emmerich, and C. Howard-reed, Continuous measurements of air change rates in an occupied house for 1 year: The eff ect of temperature, wind, fans, and windows, J. Exposure Anal. Environ. Epidemiol, vol.12, pp.296-306, 2002.

D. B. Collins, R. F. Hems, S. Zhou, C. Wang, E. Grignon et al., Evidence for Gas-Surface Equilibrium Control of Indoor Nitrous Acid, Environ. Sci. Technol, vol.52, pp.12419-12427, 2018.

S. Zhou, C. J. Young, T. C. Vandenboer, and T. F. Kahan, Role of location, season, occupant activity, and chemistry in indoor ozone and nitrogen oxide mixing ratios, Processes Impacts, 2019.

S. Madronich, Intercomparison of NO2 photodissociation and UV radiometer measurements, Atmos. Environ, vol.21, pp.569-578, 1987.

B. J. Finlayson-pitts and J. N. Pitts, Chemistry of the Upper and Lower atmosphere. Theory, Experiments, and Application, 2000.

W. B. Demore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo et al., Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling in JPL Publication 97-4, 1997.

J. Stutz, E. S. Kim, U. Platt, P. Bruno, C. Perrino et al., A UV-visible absorption cross sections of nitrous acid, J. Geophys. Res.: Atmos, issue.D11, pp.14585-14592, 2000.

R. A. Cox and R. G. Derwent, The Ultraviolet Absorption Spectrum of Gaseous Nitrous Acid, J. Photochem, vol.6, pp.23-34, 1976.

K. D. Lu, F. Rohrer, F. Holland, H. Fuchs, B. Bohn et al., Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere, Atmos. Chem. Phys, vol.12, pp.1541-1569, 2012.

B. Alicke, A. Geyer, A. Hofzumahaus, F. Holland, S. Konrad et al., OH formation by HONO photolysis during the BERLIOZ experiment, J. Geophys. Res.: Atmos, vol.108, 2003.

Y. F. Elshorbany, R. Kurtenbach, P. Wiesen, E. Lissi, M. Rubio et al., Atmos. Chem. Phys, vol.9, pp.2257-2273, 2009.

C. Topaloglou, S. Kazadzis, A. F. Bais, M. Blumthaler, B. Schallhart et al., NO2 and HCHO photolysis frequencies from irradiance measurements in Thessaloniki, vol.5, pp.1645-1653, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00301097

B. P. Leaderer, L. Naeher, T. Jankun, K. Balenger, T. R. Holford et al., Indoor, outdoor, and regional summer and winter concentrations of PM10, PM2.5, SO4 2 -, H + , NH4 + , NO3 -, NH3, and nitrous acid in homes with and without kerosene space heaters, Environ. Health Perspect, vol.107, issue.3, pp.223-231, 1999.

J. N. Pitts, E. Sanhueza, R. Atkinson, W. P. Carter, A. M. Winer et al., An Investigation of the Dark Formation of Nitrous Acid in Environmental Chambers, Int. J. Chem. Kinet, vol.16, pp.919-939, 1984.

A. Wisthaler and C. J. Weschler, Reactions of ozone with human skin lipids: Sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air, Proc. Natl. Acad. Sci. U. S. A, issue.15, pp.6568-6575, 2010.

Y. F. Elshorbany, J. Kleff-mann, R. Kurtenbach, E. Lissi, M. Rubio et al., Seasonal dependence of the oxidation capacity of the city of, vol.44, pp.5383-5394, 2010.

Y. Elshorbany, I. Barnes, K. H. Becker, J. Kleff-mann, and P. Wiesen, Sources and Cycling of Tropospheric Hydroxyl Radicals -An Overview, Z. Phys. Chem, vol.224, pp.967-987, 2010.

X. Ren, W. H. Brune, J. Mao, M. J. Mitchell, R. L. Lesher et al., Behavior of OH and HO2 in the Winter Atmosphere in, pp.252-263, 2006.

Y. Kanaya, R. Cao, H. Akimoto, M. Fukoda, Y. Komazaki et al., Urban photochemistry in central Tokyo: 1. Observed and modelled OH and HO2 radical concentrations during the winter and summer of, J. Geophys. Res.: Atmos, vol.112, p.21312, 2004.

K. M. Emmerson, N. Carslaw, and M. J. Pilling, Urban Atmospheric Chemistry during the PUMA Campaign. 2: Radical budgets for OH, HO2 and RO2, J. Atmos. Chem, vol.52, pp.165-183, 2005.

N. Carslaw, A new detailed chemical model for indoor air pollution, Atmos. Environ, vol.41, pp.1164-1179, 2007.

V. Bartolomei, E. Gomez-alvarez, J. Wittmer, S. Tlili, R. Strekowski et al., Combustion Processes as a Source of High Levels of Indoor Hydroxyl Radicals through the Photolysis of Nitrous Acid, Environ. Sci. Technol, issue.11, pp.6599-6607, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01436887

T. Berndt, S. Richters, T. Jokinen, N. Hyttinen, T. Kurten et al., Hydroxyl radical-induced formation of highly oxidized organic compounds, vol.7, pp.13677-13684, 2016.

T. Jokinen, M. Sipil, S. Richters, V. Kerminen, P. Paasonen et al., Rapid autoxidation forms highly oxidized RO2 radicals in the atmosphere, Angew. Chem., Int. Ed, vol.53, pp.14596-14600, 2014.