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Bayesian inference for TIP curves:
an application to child poverty in Germany

Edwin Fourrier-Nicolai'3 . Michel Lubrano?3

Abstract

TIP curves are cumulative poverty gap curves used for representing the three different
aspects of poverty: incidence, intensity and inequality. The paper provides Bayesian infer-
ence for TIP curves, linking their expression to a parametric representation of the income
distribution using a mixture of log-normal densities. We treat specifically the question of
zero-inflated income data and survey weights, which are two important issues in survey
analysis. The advantage of the Bayesian approach is that it takes into account all the infor-
mation contained in the sample and that it provides small sample credible intervals and tests
for TIP dominance. We apply our methodology to evaluate the evolution of child poverty
in Germany after 2002, providing thus an update the portrait of child poverty in Germany
given in Corak et al. (Rev. Income Wealth 54(4), 547-571, 2008).

Keywords Bayesian inference - Mixture model - Survey weights - Zero-inflated model -
Child poverty

1 Introduction

Poverty is usually measured as the proportion of households having an income below a
poverty line. This proportion, equivalently called the head-count ratio, the at-risk-of-poverty
rate or poverty incidence, is often taken as the unique measure of poverty, ignoring the shape
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of the income distribution among the poor. Since Sen (1976) and Shorrocks (1995), research
in poverty measurement has developed measures which take into account the distributional
aspects of poverty. The Three I's of Poverty (TIP) curve, which was formally considered
in Jenkins and Lambert (1997), is a cumulative poverty gap curve used for representing
the different aspects of poverty usually provided by the first three poverty indices of Foster
et al. (1984), measuring Incidence, Intensity and Inequality. This curve is also known in the
literature as the Poverty Profile Curve or the Poverty Gap Profile (PGP) curve (Barrett et al.
2016). TIP curves guaranty that poverty comparisons can be done in an unambiguous way
(see e.g. Jenkins and Lambert 1998a, b; Davidson and Duclos 2000). This desirable property
comes from its close relationship with the generalised Lorenz curve. Specifically, the TIP
curve is a transformation of the generalised Lorenz curve, and hence its dominance crite-
rion is equivalent, under some conditions, to restricted second-order stochastic dominance.
Consequently poverty ranking obtained by TIP dominance is robust according to the choice
of a poverty line and of a set of poverty measures. Despite their attractiveness, TIP curves
have only been used as a descriptive tool in few empirical studies, as for example in Del Rio
and Ruiz-Castillo (2001) and Kuchler and Goebel (2003). However, a recent growing atten-
tion has been devoted on providing statistical inference for TIP curves. Thuysbaert (2008)
proposes statistical inference for TIP curves in the presence of stochastic survey weights.
More recently, Barrett et al. (2016) provides a non-parametric test for TIP dominance using
influence functions. The aim of the present paper is to provide Bayesian inference for TIP
curves (and also incidently for generalised Lorenz curves) and Bayesian characterisation of
TIP dominance in the context of survey data.

The advantages of using a Bayesian approach are manyfold. First, the statistical test
can be performed directly once inference is obtained. Second, distribution-free approaches
might suffer from sensitivity to tails’ behaviour and might appear unsatisfactory in small
samples (see e.g. Cowell and Flachaire 2015). As our main focus is on the poor, the ques-
tion of tail sensitivity becomes crucial because we are concerned with the left tail of the
income distribution. Particularly, a distribution-free estimator of the TIP curve throws away
all the observations which are above the poverty line, making the question of sample size
even more crucial when we are concerned with a sub-population like children. Bayesian
inference for TIP curves at least partially overcomes these difficulties. While a distribution-
free approach does not make any assumption about the shape of the income distribution,
a Bayesian approach has to rely on a parametric or semi-parametric representation of the
income distribution. By considering that the income distribution can be represented by a
mixture of parametric distributions, we can have both a rather important flexibility obtained
by letting the sample determine the number of components of the mixture and the advan-
tage of a parametric representation using the whole sample so that no information is lost.
By using a Bayesian approach, we increase accuracy and precision for inference and tests.

Using mixtures for modelling the income distribution has a rather rich history, mainly
using log-normal densities. For instance, Flachaire and Nunez (2007) use a mixture of nor-
mal densities for the UK’s log-transformed income distribution, Lubrano and Ndoye (2016)
propose a decomposition of inequality indices using Bayesian inference for a mixture of
log-normals and Anderson et al. (2014) use a mixture of log-normals to identify the poor.
Alternative specifications have been also used, for instance Ndoye and Lubrano (2014)
propose Bayesian inference for a mixture of Pareto densities for a model of high wage for-
mation using US data. Chotikapanich and Griffiths (2008) and Lander et al. (2017) use a
mixture of gamma densities for comparing income distributions in Canada and in Indonesia.
Although the mixture of log-normal densities is particularly appropriated for capturing the



left tail of the distribution, we need to take into account both survey weights and the excess
of zero value incomes which are two recurrent issues in survey data. This added flexibility
makes the analysis more complex, particularly if we have to invert the cumulative distribu-
tion function of the mixture using numerical methods in order to compute quantile functions
or a Lorenz curve.

We have chosen to illustrate our methods by discussing child poverty in Germany
between 2000 and 2012 using the data of the German Socio-Economic Panel (GSOEP).
Child poverty in Europe is an important question that has motivated many papers (Jenkins
et al. 2000; Jenkins and Schluter 2003; Corak et al. 2008; Hill and Jenkins 2001; Brad-
bury et al. 2001), among others). More recent data than those used in these studies are now
available and many events that had surely an impact on poverty have occurred since that
period; we think specifically about the recent social and labour market reforms (the well-
known Hartz plan, 2003-2005) and the reforms on family policies after 2005. And of course,
although not specific to Germany, the 2008 financial crisis. One purpose of the present paper
is to show which kind of new information the use of TIP curves can bring in for understand-
ing the evolution of child poverty in Germany, using recently released data of the GSOEP
in order to update the results found in Corak et al. (2008).

The paper is organised as follows. In Section 2, we introduce TIP curves, their relation to
the Lorenz curve and define TIP dominance. Section 3 is devoted to Bayesian inference for
mixture of log-normal densities in the case of survey weights and zero inflated incomes. In
Section 4, we derive the analytical formulae for TIP curves when the income distribution is
modelled using a mixture of log-normals with sampling weights and zero-incomes. We also
propose a test for comparing TIP curves. Section 5 analyses the evolution of child poverty
in Germany. Section 6 concludes.

2 Measuring poverty using TIP curves
2.1 Aformal definition

Let us consider a population where each household is endowed with an income y € R™*,
the distribution of this income being F(y) and its density f(y). A household is said to be
poor if its income is below the poverty line z. Poverty intensity is measured by the relative
poverty gap, defined as follows:

max(l —y/z,0) = (1 —y/2)1(y < 2), (D

where 1(y < z) is the indicator function which is 1 if y < z and 0 otherwise. Integrating
this relative poverty gap with respect to the income distribution f(y) provides the TIP curve
of Jenkins and Lambert (1997):!

F~l(p)
TIP(p.2) = fo (1= y/9)1(y < 2 f()dy. ?)

where F~!(p) is the quantile function, and p the proportion of individuals.

I this paper we consider the relative TIP curve built on the poverty gaps normalised by the poverty line.
This is a well-known variant of the absolute TIP curve based on absolute poverty gaps max{z — y, 0}. The
advantages of the relative curve are that the FGT indices come directly from the curve and this variant is
more appropriated for comparisons of TIP curves when there are different poverty lines.
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Fig.1 TIP curves from different income distributions

For values of p greater than the poverty incidence or head-count ratio given by Py =
F(z), the TIP curve saturates and becomes horizontal. Its ordinate value is the poverty inten-
sity P; or average poverty gap. Finally the curvature of the curve represents the inequality
among the poor P;. A useful feature of the relative TIP curve is that poverty incidence Py,
poverty intensity P; and poverty inequality P, are equivalent to the FGT(«) indices intro-
duced in Foster et al. (1984) when « = 0, 1, 2 respectively. A TIP curve is thus a convenient
device for displaying at the same time the three essential aspects of poverty, justifying its
name the Three ’I’s of Poverty.

In Fig. 1, we have represented the TIP curves of two simulated income distributions,
using the same poverty line z. The top blue TIP curve represents a case of severe poverty
where 30% of the individuals have zero income and the rest has an income greater or equal
to the poverty line. In this case, the average poverty gap P; is the highest (according to the
poverty incidence) i.e. P; = Pyp. This is a straight line reflecting the fact that every poor
has the same income, hence all poverty gaps are the same. Inequality among the poor P,
is maximum (maximum slope of 1) and the Gini among the poor is 1.2 The green curve
represents a situation where 40% of the population has an income drawn from a uniform
distribution between zero and z and the rest an income greater than z. The average poverty
gap is 0.2. The curvature of the TIP curve is directly related to the inequality among the
poor, exhibiting a Gini of 0.33. The closer the income of the poor individuals are to the
poverty line, the smaller are the poverty gaps, and the closer the slope is to 0. Figure 1
represents a situation where the ranking of poverty incidence is the opposite of the ranking
of poverty intensity and inequality.

2The Gini is 1 among the poor because all the poor have a zero income while one is supposed to have z which
is a typical case of maximum inequality.



2.2 TIP curves and generalised Lorenz curves

TIP curves are closely linked to the generalised Lorenz (GL) curve as can be shown now.
Decomposing Eq. 2 and substituting ¢ for F~!(p), we obtain:

q 1 ra
TIP(p.2) = /0 Fdy == /0 yfO)dy,  forp < F(2). 3)

The first integral is the cumulative distribution function evaluated at ¢ and the second inte-
gral is the generalised Lorenz curve G L(p). These integrals can be simplified when an
analytical form for the quantile function ¢ = F~!(p) is available and consequently also for
the Lorenz curve. In this case, we have access to the direct formulation given in Davidson
and Duclos (2000):

1
TIP(p,2) ZP—EGL(P), for p < F(2). 4)
As an illustration, let us consider the log-normal case with fa (y|u, 02).3 The Lorenz curve
of a log-normal is equal to L (p) = CID(QD_l (p) — o) where @ is the standard normal
cdf. Multiplying L (p) by the mean of the log-normal exp(i + o>/2) in order to get the
generalised Lorenz curve GL A (p), we find that the TIP curve associated to log-normal
density is:

1
TIPA(p.2) = p = — exp(n+ o2/ d@(p)—0) forp<Fa(x). (5

However, we cannot take advantage of the simplicity of Eq. 4 if we want to model the
income distribution using a mixture of log-normals. With mixtures of distributions, the total
cdf F () is a weighted average of the cdf of each member, but its inverse ¢ = F~1(p) has
no analytical form and has to be solved by a numerical procedure. So, we cannot generalise
Eq. 5 easily. Instead of considering (4), we have to work with the initial form of the TIP
curve, given in (3).

2.3 Stochastic dominance and TIP dominance

The use of a dominance criteria leads to poverty comparisons that are robust to the choice
of the poverty line. As TIP curves are related to generalised Lorenz curves, they provide
a natural framework for testing restricted second order stochastic dominance. We define a
TIP ordering or TIP dominance as follows:*

Definition 1 Let us consider two income distributions corresponding to populations A and
B and their corresponding TIP curves. Distribution A TIP dominates distribution B for a
given poverty line z if TIPs(p,z) < TIPp(p,z) Vp € [0, 1], and the strict inequality
holds at least for one p.

Since generalised Lorenz dominance is strictly equivalent to second order stochastic
dominance (Atkinson 1987; Foster and Shorrocks 1988), it can be easily shown that TIP

3See for instance (Cowell 2011) for the properties of the log-normal density.
4TIP dominance according to the definition given in the 4th footnote of Jenkins and Lambert (1997) implies
that there is more poverty in A than in B if A TIP dominates B. This might appear counter-intuitive when

confronted to stochastic dominance. Thus, in our context, TIP dominance will mean less poverty as presented
in Thuysbaert (2008) or Davidson and Duclos (2000).



dominance with a common poverty line z is equivalent to restricted second order stochas-
tic dominance over the interval [0, z] or equivalently for p € [0, F(z)]. This correspond to
Theorem 2 of Jenkins and Lambert (1998b) which can be rephrased as:

Theorem 1 If distribution A TIP dominates distribution B for all p € [0, F(z)], then A
stochastically dominates B at the second order over the interval [0, z]. And this poverty
ordering holds for all common poverty lines below z.

In other words, if T1P4(p, z) is always below T 1 Pg(p, z) with a common z, then the
two distributions can be ordered with less poverty intensity and inequality in A than in B
for all common poverty lines smaller than or equal to z.

At this stage, some remarks have to be made. Second order stochastic dominance and
TIP ordering imply the ordering of FGT indices corresponding to P; and P, (intensity
and inequality) and all similar indices built around a relative poverty gap measure (see
Davidson and Duclos (2000) and Jenkins and Lambert (1998b) among others). However, a
robust ordering of poverty incidence is not guaranteed, as, for this, we would have to check
for first order stochastic dominance. This situation is illustrated in Fig. 1 as commented
before. Finally, and like for Lorenz curves, when TIP curves intersect there is indeterminacy
since the poverty ranking can be reversed for some values of p. Various ways to remove
this indeterminacy have been proposed: imposing more normative conditions and consider-
ing higher-degree dominance criteria as in Sordo and Ramos (2011), Jenkins and Lambert
(1998a) or considering a narrower range of values of z as in Atkinson (1987).

3 Bayesian inference for a mixture of log-normals in survey data

Bayesian inference for mixtures of distributions is fairly standard and was detailed for
instance in Lubrano and Ndoye (2016) for log-normals. In this section, after recalling the
necessary formulae, we extend the analysis to two important features when modelling sur-
vey data: the use of sample weights and the modelling of extra zeros. We compare our
solutions to the existing literature (Thuysbaert 2008; Si et al. 2015; Savitsky and Toth 2016;
Gunawan et al. 2017), for the main references).

3.1 Bayesian inference for a mixture of log-normals

A finite mixture f(y|?}) of log-normals is a linear combination of K log-normal densities
fa(y|p, o) such that:

K K

FO =Y e faGlucod).  0<me<1, > me=1, (6)
k=1 k=1

where the ny are the weights of the mixture and (u, akz) the parameters of the kth compo-

nent. ¥ = (5, i, o>) represents the collection of all the parameters of the mixture. The pdf
of the log-normal is written as:

exp —(ny — p)?
yo/2m 202 .

A mixture model is an incomplete data problem which can be completed by an auxil-
iary variable z which allocates each observation to a given member of the mixture. Then

faQlu, o) =



conditionally on a given sample allocation [z; = k], each component can be analysed
separately. Following Lubrano and Ndoye (2016), each component is equipped with a nat-
ural conjugate prior: a conditional normal prior on Mk|0k2 ~ fN(/,L/(“,Lg, af/ng) and an
inverted gamma prior on akz ~ fiy(0k2|v,?, s,?). A Dirichlet prior is used for the vector of
the weights: n ~ fD(yl0 s eees y,(g). The hyperparameters of these priors are the k—vectors
v0, 50, 140, n%, 0. The conditional posterior densities belong to the same families and serve
to draw a new sample allocation, resulting in a Gibbs sampler algorithm which is described
as follows:>

1. Set K the number of components, m the number of draws, mg the number of warming
draws and initial values of the parameters 2O = O O ;O

2. Forj=1,...,m+ mog:

(a) Generate a classification zﬁj ) conditionally on =D, independently for each
observation y; according to a multinomial process with probabilities:

j—1 j—1 2(j—1
" il o)

Pr(z =kly,0Y™) = = —h (7)
STV il TP, 02U
(b) Compute the conditional sufficient statistics ng, i, s,f:
n
ne =Y 1@z =k, ®)
i=1
l n
W= azmg(yi)ﬂ(z,- =k). ©)
i=1
1 n
st = oD (logh) = 510" L (@ = k). (10)

i=1

(c) Given the classification 7D, generate the parameters o, u(j ), n(j ) from the
posterior densities (11), (12) and (13):

—  The conditional posterior density of okz is an inverted gamma:
POy, 2) = fiy GF 10, 5. an
—  The conditional posterior density of 1ty |<7k2 is a conditional normal:
2 _ * 2, %
p(rlog, y, 2) = fv(uelpg, of /ng), (12)

— The conditional posterior density of 7 is a Dirichlet:

K
0
y04mi—1
POy 2) = for +ni. v +ng) o [ [ ™ (13)
k=1

3Gibbs sampler algorithms in the context of mixture models are presented in Fruhwirth-Schnatter (2001),
Fruhwirth-Schnatter (2006) where is discussed, in particular, the question of label switching and its tentative
solutions. Lubrano and Ndoye (2016) discuss the Gibbs sampler when applied to mixtures of log-normals
and, in particular, how to select prior information.



with:
n, = ng + ng,

_ 0,0 = *
MK = ("kﬂk'i‘”k)’k)/”k,
v, = v,? + ng,

0
0 2 Ttk 0 -2
sp = sp +nesi + o (g — y1)°.
ny + ng

(d) Order ¢ such that al(j ) << algj ) and sort w9 p and D accordingly to
solve label switching.
(e) Increase j by one and return to step (a).

3. Finally discard the first m stored draws and compute posterior moments and marginal
densities using the remaining draws.

3.2 Introducing survey weights

In population studies, it is common to sample individuals through a complex sample design
in which probabilities of inclusion are associated with the variables of interest. This corre-
lation results in observations that are not identically distributed: individuals with different
characteristics have different probabilities of being selected. Ignoring the sampling design
could bias inference results (Pfeffermann 1996). Survey weights are constructed to correct
for discrepancies between the sample and the population. The literature on the use of sur-
vey weights is not abundant, although there is a recent growing concern about this issue.
Most recently developed methods in a Bayesian context (see e.g. Si et al. (2015) and Sav-
itsky and Toth (2016) for a survey) propose the joint modelling of the weights and of the
variable of interest. In this case, weights are random (this is what is considered for instance
in Thuysbaert (2008) for classical inference on TIP curves). Savitsky and Toth (2016) con-
sider exogenous weights which serves to modify the likelihood function for a subsequent
Bayesian inference. The case of Bayesian inference for mixture of distributions is rather
particular, because inference is rarely based on the complete likelihood function. Introduc-
ing weights in this context led to a very scare literature. Gunawan et al. (2017) propose
a general method based on data augmentation where the representative data are treated as
missing and are resampled from the observed sample using the weights. Instead, we propose
an approach where the observations are given, the weights are exogenous and are introduced
at the level of the conditional likelihood. The conditional likelihood formulated from the
completed mixture problem with weights should be:

K
ey, =] [T ' failie, o)™ (14)

k=lizi=k

This is an adaptation of the method of Savitsky and Toth (2016) to the case of mixtures of
log-normals where the conditional likelihood function is modified by the weights w;, once
the sample separation is made. Because fa (v;|uk, okz) belongs to the exponential family,
this is equivalent to computing sufficient statistics using weights.

More precisely, let us consider n individuals that are sampled from the whole population
with sampling weights w; = 1/m; constructed to be the inverse of the inclusion probabil-
ity 7r; that individual i belongs to the survey. Let w; be the normalised weights such that
w; = nw;/ Y w;, so that they sum to the sample size n. Conditional inference using (14)



is equivalent to using sampling weights when evaluating the sufficient statistics in (8-10),
such that:

ne =Y wilz =k, (15)
i=1
1 n
Se = - > i log(y) 1(zi = k), (16)
i=1
5 = = - > g (log(yi) — 3)*1(zi = k). a7

n?— Y0 il = k) o

Given these weighted sufficient statistics, the n; are drawn using (13) together with a new
sample separation obtained using (7). So a mixture estimate of the income distribution, rep-
resentative of the original population, is obtained simply by introducing sampling weights
at the level of the conditional sufficient statistics.

3.3 Modelling zero-inflated data

Another recurrent feature of survey data is the excess number of zeros (greater than expected
under the distributional assumption). Particularly in income studies, zero incomes are
numerous when measured before taxes and transfers. Actually, a large part of the population,
such as elderly persons or unemployed workers, has no market income. As the log-normal is
defined with strictly positive support, we propose to add an extra component for modelling
the zero incomes:

w ify =0,
1—a) YK mrolen ify >0,

where @ = Pr(y = 0) >~ (3_; 1(y; = 0)w;)/ Y w;. This is a zero-inflated mixture model
where @ is estimated as the (weighted) proportion of zeros in the sample, while inference on
the other parameters is performed on the sample excluding the zeros. The cdf corresponding
to this zero-inflated mixture is:

SOl = { (18)

@ ify=0,
O+ (1—&) YK mFl6) ify > 0.

It will be used in Section 4.2 for making Bayesian inference on TIP curves.

This modelling of zero-inflated data is simple and particularly useful within a parametric
approach, knowing that values close to O cause problems for many parametric families. Even
more, non-parametric estimators might fail to represent this feature of the sample. Figure 2
represents estimates of the German disposable income distribution for the whole population
in 2009 using the GSOEP data.® The kernel density estimate smooths out the zero-excess
observations. Worse, still the kernel density estimate seems to be less flexible than the 3
component mixture at the beginning of the distribution, which is important for analysing
poverty. Even if the proportion of zeros seems negligible in this sample of disposable income
with 0.15%, it is still important to take it into account. If we had considered market income,
that proportion would have gone up to 5% for the same year.

F(yl9) = { 19

5The GSOEP will be described in Section 5 and disposable as well as market income defined in the same
section.



0.006

i N — Mixture density
L —— Component densities
. /‘\ L —— Kernel density
x AN
g 1
pa fz NN
_‘2. —
g) | f N
O]
) _
N N
s
- AN
o
) i
— T T AN
\\\\\\\ - =§§§
S T T
= i
8 -
o | | | | | |
0 100 200 300 400 500

Hundreds of euros 2005

Fig.2 The distribution of disposable household income in 2011 using weights and modelling zero incomes.
Source: authors calculations using the 2011 wave of the GSOEP

4 Bayesian inference for TIP curves

In order to provide inference for TIP curves, we have to express them as a function of
the model’s parameters. Since the quantile function of a mixture has no closed form, we
cannot generalise Eq. 4 to the case of mixtures of log-normals. We have to start from the
original definition of the TIP curve given in (3), where the expression of the quantile ¢ is
left unspecified.

4.1 An alternative TIP curve formula

Assuming that the data generating process of f(y) is a mixture of log-normal as given in
(6), we can decompose the general TIP formula, using the linearity property of the integral:

K q 1 K q
TIP(p,2) = an/ Saylpk, ox) dy — z > nk/ yfa(ylpk, o) dy,
k=1 0 k=1 0

for p < F(z). The first part of the right-hand side is the cdf of the mixture of log-normals:

ZﬂkFA(fIWk,Uk) =an<1> o

K K
(1116] — Mk
k=1 k=1



knowing that ® is the standard normal cdf and that the mixture’s cdf is the weighted sum of
the components’ cdf. In the second part of the right-hand side, we find the weighted sum of
components’ generalised Lorenz curve for the log-normal:

Ing — py — o
ok

K q K 5
> nk/O YAl o0 dy =Y meexp(ux + o /2)®
k=1 k=1

As a matter of fact, ¢ cannot be substituted within each component as in equation (5), since
q here represents the value of the p quantile of the complete mixture and the quantile of a
mixture is, of course, not a linear function of the quantile of each component and has to be
evaluated numerically. We can write the following expression of the TIP curve for a mixture
of log-normal densities:

K
Ing — pk
TIPA(p.2) = }:nk<®(}il———

O]
k=1 k

1 Ing — px — o?
—;amu+ﬁﬂw ——;r—i , (20)

for p < F(z). It turns out that the TIP curve of a mixture of log-normal densities is the
weighted sum of the components’ TIP curves, as given in (5), evaluated at the mixture’s
quantiles. As the left-hand side is a function of p, while the right-hand side is a function of
g, we have to complete this equation by a relation between p and g, solving numerically in
q the equation p = F(q). The expression of F(y) is Zle nx F (y]6x). We consider a grid
of points p, for p € [0, 1]and s = 1, ..., S. For each point p; and for each value of ¢, we
solve numerically in g the equation:

F(q|?9) = ps.

This can be done using the uniroot function in R. This function is based on the Brent
(1973)[Chapter 4]’s method, a root-finding algorithm combining the bisection method, the
secant method and the inverse quadratic interpolation. Convergence is always guaranteed
provided that the predefined interval contains the solution. The execution time of the Brent’s
algorithm is negligible.’

Let us now suppose that we have obtained m posterior draws of the parameters /) from
the Gibbs sampler. For each point p; of a predefined grid, we can obtain m draws for the
TIP curve, applying (20) and solving numerically for ¢ the equation F(g|9()) = p,. The
posterior mean of each point of the TIP curve corresponding to a value of p; is obtained as
the mean of all these m posterior draws for each value of ps. The 0.05 and 0.95 quantiles of
these m draws provide an evaluation of a 90% credible interval of the TIP curve.

4.2 TIP curves for the zero-inflated model

When we take into account the excess of zero incomes, the expression of the cumulative
distribution function is changed into that given in equation (19). Moreover, we have to solve

7Note also the method proposed in Appendix D of Gunawan et al. (2017) which is a stochastic algorithm for
computing the quantiles of a Gamma mixture.



Eq. 2 separately for 0 < p < @ and then for @ < p < 1. For the range 0 < p < w, we
know that y = 0, so equation (2) becomes:

F~l(p)
TIP(p.2) =/0 Fdy = p.

For the range @ < p < 1, we make use of Eq. 19, so the expression of the TIP curve (2)
becomes:

F~l(p) K
TIP(p.) = /O (1= Y nef(l60dy

k=1
1 P X
—f/ Y =&)Y e f(lody,
tJo k=1

and after integration:

K
Ing —
TIPULZ)=¢D+(1—d0§:nk¢<glL—ﬁf
=1 Ok
-. kK 2
(1-a) Ing — ux — o,
- > meexpu + of/)d ————& @1)
k=1 Ok
The TIP curve for an inflated-zero model can be written as:
_)p O<p=w
TIP(p’Z)_{65+(1—65)T1PA(17,Z)J)§1)§1, 22)

where T'1Pj(p,z) was defined in (20). For evaluating (22), the value of g has to be
determined using (19).

4.3 Testing for TIP dominance

Let us consider two dominance curves D (y) and D} (y) at the order s for the two states
A and B, respectively. We say that A dominates B if D (y) < D% (y). When testing for
stochastic dominance (or TIP dominance), we have to compare two curves at a given number
of points. Most statistical tests of stochastic dominance consider a null of dominance, see
Cowell and Flachaire (2015) for a survey of the classical approach. This means that the null
hypothesis Ho : D% (y) < Dy(y) has to be verified for all values of y while the alternative
is chosen if it is valid for some values of y. It is worth mentioning that non-rejection of the
null does not imply a situation of non-dominance.

Davidson and Duclos (2000, 2013) consider a test where the null is non-dominance and
the alternative is dominance. In this case, we say that A does not dominate B and the null
is Hy : D (y) > Dy(y) which has to be verified for some y. If the null is rejected, the
alternative is dominance and is valid for all values of y. Because the test is based on finding
the least favourable case, it relies on the minimum over y of the distance between the two
curves. Translated into the domain of TIP dominance, this type of test would consider the
minimum distance between two TIP curves computed over a grid for p.

Hypothesis testing is the domain where there is the greatest difference between the clas-
sical and the Bayesian approach. Essentially in a Bayesian framework there is no privileged
hypothesis. The two hypotheses Hy and H; are compared by means of the ratio between
their posterior probability, the famous Bayes factor Pr(Hp|y)/ Pr(Hj|y). The main question



for evaluating a Bayes factor is to find a convenient way to compute the posterior probability
of a hypothesis. In our case, the probability we want to compute is:

Pr[(x, pl0) < 0], Vp e [0, 1],
where
8(x, pl0) = TIPs(p,z104) — T1Pp(p, z|0B),

and 64 and 6p are the parameters associated to TIP curves A and B, respectively. The

probability that §(x, p|0) < O is the probability that A TIP dominates B. We evaluate each
TIP curve on a grid of fixed points, conditionally on a draw of the parameters, say 6’/(‘] ) and

Oéj ) The condition 8(x, p|@) < 0 defines a logical vector of zeros and ones of dimension
S, the dimension of the grid. It is equivalent to check any of the three following conditions:

s
1_[ 1@ (pil?) <0) =1, max1(8(p;l6) <0) =1, minl(=8(p;|0) >0) = 1.
1 1
i=1
The posterior probability of this event can be evaluated easily once we have obtained m
posterior draws of the parameters /) from the Gibbs sampler. More formally:

Pr (maxd(p|y) <0 = / 1 |:maxd(p|l9) <0 u@|y)dd
p 9 P

12

1 & ‘
31 [maxd(pw(f)) <0, (23)
m =1 14

where p(9|y) is the posterior density of the parameters.® This procedure is general and
allows us to obtain the probability of stochastic dominance, restricted stochastic dominance,
Lorenz dominance and TIP dominance depending on the grid defined and the poverty lines
chosen.

Because TIP dominance is equivalent to restricted second order stochastic dominance,
there is no guarantee that in the case of TIP dominance there is also less poverty incidence
as shown for instance in Fig. 1. We thus have to complement our TIP dominance test by
a test comparing two poverty incidence measures. When evaluating 71 P4 (p, z|91(4] )) and
TIPB(p,zlel(gj)), we have to compute P§ = h(z, 95{)) and P) = h(z, 91(;’)) in order to
determine at which point the graph of the TIP curve becomes horizontal. Testing for a lower
poverty incidence in A than in B is equivalent to computing the proportion of cases where
h(z,09) < h(z,0) for j=1,....m.

Finally, when can we say that the situation in A is not statistically different from the
situation in B? Equality is rejected if, for at least one value of ps, 8(ps|¥) is statistically
different from zero. This means that we have to compute a credible interval for § (p;|?) and
see if zero is included in this interval. If we find a single p; for which zero does not belong
to a say 90% credible interval for §(p;|?), then we can reject at the 90% level that the two
TIP curves are equal.

How do our method is related to the existing literature? Chotikapanich and Griffiths
(2006) relate Lorenz dominance and stochastic dominance to parametric restrictions when
the income distribution is modelled with either a Dagum or a Singh-Maddala distribution.

8Note here that the range of p has to be slightly restricted because all TIP curves are zero at p = 0 and
solving numerically for the p = 1 quantile can be troublesome. So the practical range for the test should be
something like p € [0.01, 0.99], values adopted in e.g. Davidson and Duclos (2013).



On one side, they compute the posterior probability that these parametric restrictions are
satisfied. On the other side, they compute the probability that two dominance curves are
ordered for all values of y or all values of p when they compare Lorenz curves. In a MCMC
framework, these probabilities are evaluated by counting the number of times the inequality
condition is satisfied. Lander et al. (2017) take into account the necessity to have a flexible
formulation for modelling the income distribution using a mixture of gamma distributions.
Numerous papers have proposed statistical tests based on stochastic dominance in a classical
approach, see Xu and Osberg (1998) and Berihuete et al. (2018) among others.

5 A new portrait of child poverty in Germany

Corak et al. (2008) provides some of the most recent results concerning the evolution of
child poverty in Germany, using data from the German Socio-Economic Panel (GSOEP).
They provide information on the evolution of poverty incidence both for children and for
adults (adults are defined as those in households without children). They analyse the East-
West contrast, the impact of family composition and of citizenship status. They provide
information on poverty dynamics by examining the average length of poverty spells, com-
puting probabilities of entry into poverty and exit of poverty. Finally, they compare the
impact of the redistributive system between Germany and a group of English speaking
countries.

However, their reporting period ends in 2004. As new data are now available, we pro-
pose to investigate the period 2000-2012 in order to check if child poverty follows the same
trends as the ones depicted before or if there has been a structural break. TIP curves will
also complement the portrait of poverty incidence given in Corak et al. (2008) with infor-
mation about poverty intensity and poverty inequality. They will also provide information
on poverty dynamics when applied to smoothed income as in Kuchler and Goebel (2003) in
order to depict chronic poverty, as explained below.

5.1 Data and methodological issues

The GSOEP is a socio-economic panel provided by the German Institute for Economic
Research in Berlin (DIW). It is a representative sample of households living in Germany
since 1983 and including former East German households after the reunification. For the
period 2000-2012, each wave covers on average 11 623 households. Among these, on aver-
age 3 154 households have children and their average number of children is 1.48 so that on
average, the sample contains 4 680 children in each wave.

The survey is a stratified sample with weights. Cross sectional weights are introduced in
order to match individual and household profiles to those of the population. Longitudinal
weights are computed to account for the probability of a household to stay in the survey
next year. New households are regularly added to the panel to compensate for attrition.

Two types of income can be reconstructed: an annual market income which repre-
sents labour income, capital income, in fact all incomes coming from a market activity; a
disposable income which is the market income minus taxes and plus redistribution includ-
ing unemployment benefits, social security pensions, family allowances and all remaining
forms of social redistribution. We consider the real disposable income obtained by dividing
the current income by the Consumer Price Index (2005) provided in the GSOEP.
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Fig. 3 How to define a poverty line and the corresponding poverty rates. (The left panel displays yearly
poverty lines based on 50% of the sample median. The horizontal line is the average poverty line which is
equal to 8 455 euros. It is used for computing distribution-free poverty head-counts rates in the right panel.)

In order to keep coherency with the paper of Corak et al. (2008), we define the poverty
line as 50% of the sample median disposable income (taking into account all households,
those having children and those without children). Remark that the disposable income is
normalised by the new OECD equivalence scale and expressed in real terms.” Computed
poverty lines are provided in the left panel of Fig. 3. The average poverty line is 8 455 euros
per year and per equivalent adult over the whole period. The annual poverty line is slightly
greater than this value before 2006 and slightly below after that date. But the fluctuation is
less than 2%, so we have decided to keep the same poverty line over the entire period, which
is more convenient to implement tests of TIP dominance.

Analysing child poverty means that we consider households with children having an
equivalent disposable income below the poverty line. We define a child as a person under
18 years old. It would be misleading to consider a household as the unit of observation,
ignoring the number of children in the household. This would certainly under-estimate the
number of poor children in the country. A more realistic approach, followed by Hill and
Jenkins (2001), Jenkins and Schluter (2003), Corak et al. (2008) and many others, consists
in considering a child (and not a household) as the unit of observation, which means having
possibly several observations coming from the same household. The child poverty incidence
rate corresponds thus to the ratio between the number of children living in poor households
over the total number of children.

We report in the right panel of Fig. 3 the evolution of child poverty incidence, distin-
guishing between East and West Germany. The child poverty head-count ratio follows a
rising trend until 2006. This corroborates the findings of Corak et al. (2008) for the period
1999-2004. But this rising evolution stops in 2006 as from that date child poverty incidence
decreases, except in East Germany after the financial crisis. This change might reflect the
delayed effect of the Hartz reforms which introduced large changes in social assistance.!?

9We used the cross-section household weights for computing the median. We eliminated the households
which were given a zero cross-section weight in the data set.

10The Hartz reforms, started in 2003 and ended at the beginning of 2005, have fundamentally changed the
labour market, the social assistance and insurance systems. They have triggered a lot of political and social
protests. See the online Appendix B for more details.



We conclude that there is a clear break around 2006, which justifies considering separately
two periods for dynamic analysis.

Analysing poverty dynamics has a long history starting with Bane and Ellwood (1986).
They propose to study the length of poverty spells, a poverty spell; that is, the period in
which a household is below the poverty line. Corak et al. (2008) analyse the length of
poverty spells of households with children. They also compute the probability of entering
into poverty and the probability of exiting from poverty. However, this approach has been
criticised because of the bias introduced by censored spells and also because it considers
only one dimension of poverty, namely poverty incidence. Rodgers and Rodgers (1993) pro-
moted the idea that households can transfer income from one year to the other, then poverty
has to be portrayed with respect to the smoothed or permanent income. It is computed at
the household level over a given period, usually taking the mean income over the period as
in Hill and Jenkins (2001). Then, chronic poverty is when the household smoothed income
(as evaluated over a given period) is below the poverty line. Kuchler and Goebel (2003)
pushed the analysis one step further, considering TIP curves using smoothed income to
depict chronic poverty.

Analysing the dynamics of poverty requires panel data. We have to be able to follow
the same household over a given period, which means that the panel has to be balanced
over that period. Because the year 2012 led to huge attrition, we preferred to discard this
end-of-sample year. Second, we have seen in Fig. 3 that the dynamics of poverty incidence
has changed in 2006. So there is a strong interest in considering two subperiods and thus
providing a separate analysis of chronic poverty for each of them. The balanced panel for
the subperiod 2007-2011 covers five years and contains 2 236 children. In order to have the
same number of years in the first period, we drop 2000 and 2001 so that the period 2002-
2006 contains also five years and 2 991 children. We then compute two series of smoothed
income obtained as individual weighted means using longitudinal weights.

5.2 The evolution of child poverty

We shall first compare TIP curves computed at the beginning of a sub-period and at the
end of the same subperiod to measure the evolution of the three aspects of current poverty.
If there is TIP dominance, this will give a clear indication on the evolution of at least two
dimensions of poverty, intensity and inequality. Investigating the first dimension, incidence,
requires a specific formal test.

The left part of Fig. 4 clearly shows that there is a significant increase in the three aspects
of child poverty over the first period as a) TIP curves do not intersect, b) their 90% credible
intervals do not overlap, c) the 90% credible intervals of poverty incidence also do not
overlap. We have a confirmation of the results of Corak et al. (2008) who concluded to an
increase of the incidence of child poverty in Germany between 1999 and 2004. But this
result is extended a) to the three dimensions of child poverty and b) till the year 2006, and
for all poverty lines lower than 8 455 euros.

The behaviour of child poverty during the second period (2007-2011) is just the oppo-
site. As the graphs have the same scale, visual comparison is made easy. Current poverty
has decreased significantly between the beginning and the end of that period. There is a
significant reduction of child poverty in all its dimensions as all credible intervals do not
overlap.

Formal dominance tests confirm these results. For current child poverty, the last line of
Table 1 shows that 2011 dominates all the other reported years and that poverty incidence
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Fig. 4 The three I's of child poverty in Germany. (90% credible intervals are represented by dotted lines.
In black solid line is represented the TIP curve at the beginning of each sub-period. The red dashed line
corresponds to the TIP curve of the end of each subperiod.)

is the lowest in 2011. The other lines of Table 1 show that child poverty has significantly
increased between 2002 and 2006 (2002 TIP dominates 2006 with probability 0.952) while
it decreases after that date (2007 TIP dominates 2006 with probability 0.947 and 2011
dominates all the other years with probability 1.000). The ordering of poverty incidence is
in accordance, so that we can order simultaneously the three aspects of poverty at similar
degree of probability. We have also tested and found that the TIP curves in 2002 and 2007
were not statistically different. The global portrait of child poverty depicted in Corak et al.
(2008) has thus completely changed.

5.3 Chronic poverty and the East-West contrast
It is much worse for a household to be in a state of chronic poverty over a long period

(here five years) than being temporarily in poverty. So we shall concentrate from now on
chronic poverty, computing TIP curves with smoothed income instead of current income,

Table 1 Probability of TIP dominance for current child poverty

TIP dominance Lower incidence
Year 2002 2006 2007 2011 2002 2006 2007 2011
2002 - 0.952 0.401 0.000 - 0.999 0.481 0.000
2006 0.000 - 0.001 0.000 0.001 - 0.001 0.000
2007 0.384 0.947 - 0.000 0.519 0.999 - 0.000
2011 1.000 1.000 1.000 - 1.000 1.000 1.000 -

Each line represents the probability that there is less poverty in the corresponding year than in the year given
in column. The first panel corresponds to TIP dominance (intensity and inequality) while the right panel
indicates the probability of lower incidence
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following the approach of Kuchler and Goebel (2003), in order to explore the East-West
contrast. East and West Germany have been reunified in 1990. However, the convergence
between these two regions is slow and the economic differences are still important. Corak
et al. (2008) concluded that child poverty incidence was much more important in the East
part of Germany.

This is confirmed for child chronic poverty during period I (2002-2006) as seen when
comparing the two panels of Fig. 5. However because the credible intervals are large, there
is no TIP dominance of the West over the East for the first period (the probability of TIP
dominance is 0.212, but incidence is lower with a probability of 1.000 as reported from
Table 2).

There is a massive reduction of chronic child poverty during period IT (2007-2011), both
in East and West Germany as seen from the two panels of Fig. 5. As a matter of fact, we
observe TIP dominance of period II over period I for the two regions (left part of Table 2)
and also a significant lower child poverty incidence (right part of Table 2). This massive
reduction of chronic child poverty has erased the differences between the two regions con-
cerning chronic child poverty. The two TIP curves were tested not to be statistically different
between the two regions (the two red dashed curves in the two panels of Fig. 5). We con-
clude that the redistributive system has been very efficient during the second period for
fighting against chronic child poverty and after the Hartz reforms came into force.

Table 2 TIP dominance test for child chronic poverty between West and East Germany

West East West East
1 11 I I 1 I 1 11
West I - 0.001 0.212 0.042 - 0.017 1.000 0.267
1T 0.997 - 0.989 0.668 0.982 - 1.000 0.647
East I 0.019 0.000 - 0.003 0.000 0.000 - 0.001
1T 0.917 0.166 0.842 - 0.733 0.353 0.999

Each column represents the probability that there is less poverty for the category indicated in line. The first
panel corresponds to TIP dominance (intensity and inequality) while the right panel indicates the probability
of lower incidence. Period I corresponds to 2002-2006 and Period II to 2007-2011.



6 Conclusion

We have provided Bayesian inference for TIP curves. Specifically, we have proposed para-
metric modelling of the income distribution using a mixture of log-normal densities. We
also solved two questions raised by the use of survey data: incorporating survey weights
and taking into account explicitly zero-income data. Once we have obtained random draws
of the income distribution parameters from the posterior distributions, the TIP curves are a
(not so) simple transformation of these draws, which means that we have direct access to
statistical inference (both credible intervals and testing). In doing so, we propose a solution
for computing the quantiles of a mixture model.

Using TIP curves, we gave an empirical portrait of child poverty in Germany, which is
complementary to that of Corak et al. (2008), both for the period considered and for the
tools we used. We showed that poverty head-counts rates have to be completed by other
dimensions and that TIP curves are very convenient for this issue. In some cases, the poverty
incidence ordering is consistent with the poverty ordering in the other dimensions, but in
other cases, this is not so clear. We provided an example with adult poverty reported in
Table 3 of the online Appendix C.

Child poverty continued to follow the upward trend found in Corak et al. (2008) and
that up to 2006. However, after 2006, the portrait of child poverty in Germany has totally
changed with a decrease in both current and chronic poverty and a reduction of the gap
between adult and child poverty. The gap between East and West chronic child poverty was
also much reduced, becoming not significant. There has thus been a convergence on this
point between the two parts of Germany. Meanwhile, adult chronic poverty (as documented
in online Appendix C) has increased a lot in East Germany while it was decreasing in the
West. We might see there a consequence of the structural changes introduced by the Hartz
plan (2003-2005) and the related reforms.
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