Optimal Time Interval Selection in Long-Run Correlation Estimation - Archive ouverte HAL Access content directly
Journal Articles Journal of Quantitative Economics Year : 2020

Optimal Time Interval Selection in Long-Run Correlation Estimation

Abstract

This paper presents an asymptotically optimal time interval selection criterion for the long-run correlation block estimator (Bartlett kernel estimator) based on the Newey–West and Andrews–Monahan approaches. An alignment criterion that enhances finite-sample performance is also proposed. The procedure offers an optimal alternative to the customary practice in finance and economics of heuristically or arbitrarily choosing time intervals or lags in correlation studies. A Monte Carlo experiment using parameters derived from Dow Jones returns data confirms that the procedure can be MSE-superior to alternatives such as aggregation over arbitrary time intervals, parametric VAR, and Newey–West covariance matrix estimation with automatic lag selection.
Fichier principal
Vignette du fichier
Albuquerque_Optimal Time Interval Selection in Long-Run Correlation Estimation_2020.pdf (364.46 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02482675 , version 1 (09-07-2020)

Identifiers

Cite

Pedro Albuquerque. Optimal Time Interval Selection in Long-Run Correlation Estimation. Journal of Quantitative Economics, 2020, 18 (1), pp.53-79. ⟨10.1007/s40953-019-00175-x⟩. ⟨hal-02482675⟩
62 View
183 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More