E. Ahmed, I. Yaqoob, I. A. Hashem, I. Khan, A. I. Ahmed et al., The role of big data analytics in Internet of Things, 2017.

I. Azimi, T. Pahikkala, A. M. Rahmani, H. Niela-vilén, A. Axelin et al., Missing data resilient decision-making for healthcare iot through personalization: A case study on maternal health, Future Generation Computer Systems, vol.96, pp.297-308, 2019.

B. Chen, S. Rho, L. T. Yang, and Y. Gu, Privacy-preserved big data analysis based on asymmetric imputation kernels and multiside similarities, Future Generation Computer Systems, 2018.

C. K. Chui and G. Chen, , 2017.

M. C. De-goeij, M. Van-diepen, K. J. Jager, G. Tripepi, C. Zoccali et al., Multiple imputation: dealing with missing data, Nephrology Dialysis Transplantation, vol.28, issue.10, pp.2415-2420, 2013.

S. , D. Martino, and S. Rossi, An Architecture for a Mobility Recommender System in Smart Cities, Procedia Computer Science, 2016.

A. R. Donders, G. J. Van-der-heijden, T. Stijnen, and K. G. Moons, A gentle introduction to imputation of missing values, Journal of clinical epidemiology, vol.59, issue.10, pp.1087-1091, 2006.

B. Fekade, T. Maksymyuk, M. Kyryk, and M. Jo, Probabilistic Recovery of Incomplete Sensed Data in IoT, IEEE Internet of Things Journal, 2018.

L. Gruenwald, H. Chok, and M. Aboukhamis, Using Data Mining to Estimate Missing Sensor Data, Seventh IEEE International Conference on Data Mining -Workshops (ICDM Workshops, pp.207-212, 2007.

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, Internet of things (iot): A vision, architectural elements, and future directions, Future generation computer systems, vol.29, issue.7, pp.1645-1660, 2013.

A. Karkouch, H. Mousannif, H. Moatassime, and T. Noel, Data quality in internet of things A state of the art survey, Journal of Network and Computer Applications, 2016.

A. Kejariwal, S. Kulkarni, and K. Ramasamy, Real Time Analytics: Algorithms and Systems, Proceedings of the VLDB Endowment, 2017.

B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Wo?niak, Ensemble learning for data stream analysis: A survey, 2017.

M. H. Le-gruenwald, Estimating missing values in related sensor data streams, 12th International Conference on Management of Data, 2005.

Q. Ma, Y. Gu, F. Li, and G. Yu, Order-sensitive missing value imputation technology for multisource sensory data, Journal of Software, vol.27, issue.9, pp.2332-2347, 2016.

I. P. Mary and L. Arockiam, Imputing the missing data in IoT based on the spatial and temporal correlation, 2017 IEEE International Conference on Current Trends in Advanced Computing (ICCTAC), 2017.

G. Modi, S. Bansal, and M. A. Patidar, A survey on sequential rule mining techniques, International Journal For Technological Research In Engineering, vol.6, issue.3, 2018.

L. J. Liqiang and L. I. Jianzhong, A multipleregression-model-based missing values imputation algorithm in wireless sensor network, Journal of Computer Research and Development, vol.33, issue.1, pp.1-11, 2010.

D. Puiu, P. Barnaghi, R. Tönjes, D. Kümper, M. I. Ali et al., Citypulse: Large scale data analytics framework for smart cities, IEEE Access, vol.4, pp.1086-1108, 2016.

T. E. Raghunathan, J. M. Lepkowski, J. Van-hoewyk, and P. Solenberger, A multivariate technique for multiply imputing missing values using a sequence of regression models, Survey methodology, vol.27, issue.1, pp.85-96, 2001.

R. Ranjan, O. Rana, S. Nepal, and M. Y. Cloud, The Next Grand Challenges: Integrating the Internet of Things and Data Science, IEEE Cloud Computing, 2018.

P. P. Rodrigues and J. Gama, Online prediction of streaming sensor data, Proceedings of the 3rd international workshop on knowledge discovery from data streams (IWKDDS 2006), in conjuntion with the 23rd international conference on machine learning, 2006.

M. Schleich, D. Olteanu, and R. Ciucanu, Learning linear regression models over factorized joins, pp.3-18, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01330113

R. Somasundaram and R. Nedunchezhian, Evaluation of three simple imputation methods for enhancing preprocessing of data with missing values, International Journal of Computer Applications, vol.21, issue.10, 2011.

O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie et al., Missing value estimation methods for dna microarrays, Bioinformatics, vol.17, issue.6, pp.520-525, 2001.

H. Turabieh, A. A. Salem, and N. Abu-el-rub, Dynamic L-RNN recovery of missing data in IoMT applications, Future Generation Computer Systems, 2018.

N. Vijayakumar and B. Plale, Missing Event Prediction in Sensor Data Streams Using Kalman Filters, 2009.

E. A. Wan and R. Van-der-merwe, The unscented Kalman filter for nonlinear estimation, Symposium on Adaptive Systems for Signal Processing Communications and Control, 2000.

H. L. Wang-huiwen and W. Yuan, Incremental algorithm of multiple linear regression model, Journal of Beijing University of Aeronautics and Astronsutics, vol.40, issue.11, pp.1487-1491, 2014.

X. Yan, W. Xiong, L. Hu, F. Wang, and K. Zhao, Missing value imputation based on gaussian mixture model for the internet of things, Mathematical Problems in Engineering, 2015.

X. Zhou, X. Wang, and E. R. Dougherty, Missing-value estimation using linear and nonlinear regression with Bayesian gene selection, Bioinformatics, 2003.

I. Zliobaite and B. G. , Adaptive preprocessing for streaming data, IEEE Transactions on Knowledge and Data Engineering, 2014.