H. Kolenda, H. Steffens, O. Gefeller, J. Hagenah, and E. Schomburg, Critical levels of spinal cord blood flow and duration of ischemia for the acute recovery of segmental spinal cord responses in cats, J Spinal Disord, vol.10, issue.4, pp.288-295, 1997.

M. G. Fehlings, L. Tetreault, P. C. Hsieh, V. Traynelis, and M. Y. Wang, Introduction: Degenerative cervical myelopathy: diagnostic, assessment, and management strategies, surgical complications, and outcome prediction, Neurosurg Focus, vol.40, issue.6, p.1, 2016.

C. Vilaça, M. Orsini, A. Leite, and M. A. , Cervical spondylotic myelopathy: what the neurologist should know, Neurol Int, vol.8, issue.4, 2016.

A. R. Martin, D. Leener, B. Cohen-adad, and J. , Monitoring for myelopathic progression with multiparametric quantitative MRI, PLOS ONE, vol.13, issue.4, p.195733, 2018.

A. R. Martin, I. Aleksanderek, and J. Cohen-adad, Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, NeuroImage Clin, vol.10, pp.192-238, 2016.

L. Fradet, P. Arnoux, J. Ranjeva, Y. Petit, and V. Callot, Morphometrics of the Entire Human Spinal Cord and Spinal Canal Measured From In Vivo High-Resolution Anatomical Magnetic Resonance Imaging: Spine, vol.39, pp.262-269, 2014.

C. R. Figley and P. W. Stroman, Investigation of human cervical and upper thoracic spinal cord motion: Implications for imaging spinal cord structure and function, Magn Reson Med, vol.58, issue.1, pp.185-189, 2007.

G. Duhamel, V. Callot, P. J. Cozzone, and F. Kober, Spinal cord blood flow measurement by arterial spin labeling, Magn Reson Med, vol.59, pp.846-854, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00337933

P. Martirosian, U. Klose, I. Mader, and F. Schick, FAIR true-FISP perfusion imaging of the kidneys, Magn Reson Med, vol.51, issue.2, pp.353-361, 2004.

B. Leporq, H. Saint-jalmes, and C. Rabrait, Optimization of intra-voxel incoherent motion imaging at 3.0 Tesla for fast liver examination: Optimization of Liver Motion Imaging at 3.0T, J Magn Reson Imaging, vol.41, issue.5, pp.1209-1217, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01030858

C. Wang, X. Han, and W. Jiang, Perfusion of Spinal Cord in postoperative patient with Cervical Spondylotic Myelopathy using MR DSC technique, Proceedings of the 25th Annual Meeting of the International Society for Magnetic Resonance in Medicine, p.2507, 2017.

C. Wang, X. Han, and W. Jiang, Spinal Cord Perfusion is Associated with Diffusion and clinical mJOA score in Preoperative Patients with, Cervical Spondylotic, vol.38, p.43

. Myelopathy, Proceedings of the 26th Annual Meeting of the International Society for Magnetic Resonance in Medicine, p.5397, 2018.

B. M. Ellingson, D. C. Woodworth, K. Leu, N. Salamon, and L. T. Holly, Spinal cord perfusion MR imaging implicates both ischemia and hypoxia in the pathogenesis of cervical spondylosis, World Neurosurg, 2019.

V. Cuvinciuc, M. Viallon, I. Barnaure, M. I. Vargas, K. Lovblad et al., Dynamic Contrast-Enhanced MR Perfusion of Intradural Spinal Lesions, Am J Neuroradiol, vol.38, pp.192-194, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01950644

J. Ramalho, R. C. Semelka, M. Ramalho, R. H. Nunes, M. Alobaidy et al., Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update, Am J Neuroradiol, vol.37, issue.7, pp.1192-1198, 2016.

T. Kanda, T. Fukusato, and M. Matsuda, Gadolinium-based Contrast Agent Accumulates in the Brain Even in Subjects without Severe Renal Dysfunction: Evaluation of Autopsy Brain Specimens with Inductively Coupled Plasma Mass Spectroscopy, Radiology, vol.276, issue.1, pp.228-232, 2015.

D. C. Alsop, J. A. Detre, and X. Golay, Recommended implementation of arterial spinlabeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia: Recommended Implementation of ASL for Clinical Applications, Magn Reson Med, vol.73, issue.1, pp.102-116, 2015.

G. Duhamel, V. Callot, and P. Decherchi, Mouse lumbar and cervical spinal cord blood flow measurements by arterial spin labeling: Sensitivity optimization and first application, Magn Reson Med, vol.62, pp.430-439, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00399454

O. M. Girard, V. Callot, B. Robert, P. J. Cozzone, and G. Duhamel, Perfusion MRI of the Human Cervical Spinal Cord using Arterial Spin Labeling, Proceedings of the 21st Annual Meeting of the International Society for Magnetic Resonance in Medicine, p.349, 2013.

G. Nair and X. P. Hu, Perfusion Imaging of the Human Cervical Spinal Cord, Proceedings of the 19th Annual Meeting of the International Society for Magnetic Resonance in Medicine, p.4083, 2010.

Y. Wang, S. Moeller, and X. Li, Simultaneous multi-slice Turbo-FLASH imaging with CAIPIRINHA for whole brain distortion-free pseudo-continuous arterial spin labeling at 3 and 7T, NeuroImage, vol.113, pp.279-288, 2015.

A. Massire, M. Taso, P. Besson, M. Guye, J. Ranjeva et al., High-resolution multiparametric quantitative magnetic resonance imaging of the human cervical spinal cord at 7T, NeuroImage, vol.143, pp.58-69, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01425500

A. Massire, H. Rasoanandrianina, and M. Taso, Feasibility of single-shot multi-level multi-angle diffusion tensor imaging of the human cervical spinal cord at 7T, Magn Reson Med, vol.80, issue.3, pp.947-957, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02065589

L. Bihan, D. Breton, E. Lallemand, D. Aubin, M. L. Vignaud et al., Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging, Radiology, vol.168, issue.2, pp.497-505, 1988.
URL : https://hal.archives-ouvertes.fr/hal-00349716

C. Wang, D. Ren, and Y. Guo, Distribution of intravoxel incoherent motion MRIrelated parameters in the brain: evidence of interhemispheric asymmetry, Clin Radiol, vol.72, issue.1, 2017.

S. Bisdas and U. Klose, IVIM analysis of brain tumors: an investigation of the relaxation effects of CSF, blood, and tumor tissue on the estimated perfusion fraction, Magn Reson Mater Phys Biol Med, vol.28, issue.4, pp.377-383, 2015.

M. Bertleff, S. Domsch, and S. Weingärtner, Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T, NMR Biomed, vol.30, issue.12, p.3833, 2017.

S. Suo, M. Cao, and W. Zhu, Stroke assessment with intravoxel incoherent motion diffusion-weighted MRI, NMR Biomed, vol.29, issue.3, pp.320-328, 2016.

C. Federau, Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: A review of the evidence, NMR Biomed, vol.30, issue.11, p.3780, 2017.

I. I. Maximov and S. Vellmer, Isotropically weighted intravoxel incoherent motion brain imaging at 7T, Magn Reson Imaging, vol.57, pp.124-132, 2019.

B. Milani, J. Ledoux, and D. C. Rotzinger, Image acquisition for intravoxel incoherent motion imaging of kidneys should be triggered at the instant of maximum blood velocity: evidence obtained with simulations and in vivo experiments, Magn Reson Med, vol.81, issue.1, pp.583-593, 2019.

G. Gambarota, E. Hitti, B. Leporq, H. Saint-jalmes, and O. Beuf, Eliminating the blood-flow confounding effect in intravoxel incoherent motion (IVIM) using the non-negative least square analysis in liver: NNLS Analysis of IVIM Data in Liver, Magn Reson Med, vol.77, issue.1, pp.310-317, 2017.

O. Jalnefjord, M. Andersson, and M. Montelius, Comparison of methods for estimation of the intravoxel incoherent motion (IVIM) diffusion coefficient (D) and perfusion fraction (f). Magn Reson Mater Phys Biol Med, 2018.

Z. Xiang, A. Z. Liang, J. Li, G. Zhu, X. Yan et al., Evaluation of Regional Variability and Measurement Reproducibility of Intravoxel Incoherent Motion Diffusion Weighted Imaging Using a Cardiac Stationary Phase Based ECG Trigger Method, BioMed Res Int, vol.2018, pp.1-11, 2018.

A. Lemke, F. B. Laun, D. Simon, B. Stieltjes, and L. R. Schad, An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen, Magn Reson Med, vol.64, issue.6, pp.1580-1585, 2010.

S. Barbieri, O. F. Donati, J. M. Froehlich, and H. C. Thoeny, Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs, Magn Reson Med, vol.75, issue.5, pp.2175-2184, 2016.

O. J. Gurney-champion, R. Klaassen, and M. Froeling, Comparison of six fit algorithms for the intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging data of pancreatic cancer patients, PLOS ONE, vol.13, issue.4, p.194590, 2018.

J. Pekar, C. Moonen, and P. Van-zijl, On the precision of diffusion/perfusion imaging by gradient sensitization, Magn Reson Med, vol.23, issue.1, pp.122-129, 1992.

C. Federau, K. O'brien, R. Meuli, P. Hagmann, and P. Maeder, Measuring brain perfusion with intravoxel incoherent motion (IVIM): Initial clinical experience, J Magn Reson Imaging, vol.39, issue.3, pp.624-632, 2014.

C. Federau, P. Maeder, K. O'brien, P. Browaeys, R. Meuli et al., Quantitative Measurement of Brain Perfusion with Intravoxel Incoherent Motion MR Imaging, Radiology, vol.265, issue.3, pp.874-881, 2012.

S. Bisdas, T. S. Koh, and C. Roder, Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: feasibility of the method and initial results, Neuroradiology, vol.55, issue.10, pp.1189-1196, 2013.

C. Federau, R. Meuli, K. O'brien, P. Maeder, and P. Hagmann, Perfusion Measurement in Brain Gliomas with Intravoxel Incoherent Motion MRI, Am J Neuroradiol, vol.35, issue.2, pp.256-262, 2014.

M. Taso, O. M. Girard, and G. Duhamel, Tract-specific and age-related variations of the spinal cord microstructure: a multi-parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT), NMR Biomed, vol.29, pp.817-832, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01425521

T. Finkenstaedt, M. Klarhoefer, and C. Eberhardt, The IVIM signal in the healthy cerebral gray matter: A play of spherical and non-spherical components, NeuroImage, vol.152, pp.340-347, 2017.

R. S. Samson, S. Lévy, and T. Schneider, ZOOM or Non-ZOOM? Assessing Spinal Cord Diffusion Tensor Imaging Protocols for Multi-Centre Studies, PLOS ONE, vol.11, p.155557, 2016.

J. Xu, J. S. Shimony, and E. C. Klawiter, Improved in vivo diffusion tensor imaging of human cervical spinal cord, NeuroImage, vol.67, pp.64-76, 2013.

D. L. Bihan and R. Turner, The capillary network: a link between ivim and classical perfusion, Magn Reson Med, vol.27, issue.1, pp.171-178, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00350065

R. Storn and K. Price, Differential Evolution -A Simple and Efficient Heuristic for global Optimization over Continuous Spaces, J Glob Optim, vol.11, issue.4, pp.341-359, 1997.

V. Epha, M. Van-osch, C. Bakker, and M. A. Viergever, Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI, J Magn Reson Imaging, vol.10, issue.2, pp.109-117, 1999.

M. Parkes-laura, C. Rashid-waqar, and T. Declan, Tofts Paul S. Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects, Magn Reson Med, vol.51, issue.4, pp.736-743, 2004.

J. N. Morelli, V. M. Runge, T. Feiweier, J. E. Kirsch, K. W. Williams et al., Evaluation of a modified Stejskal-Tanner diffusion encoding scheme, permitting a marked reduction in TE, in diffusion-weighted imaging of stroke patients at 3 T, Invest Radiol, vol.45, issue.1, pp.29-35, 2010.

G. Diiorio, J. J. Brown, J. A. Borrello, W. H. Perman, and H. H. Shu, Large angle spin-echo imaging, Magn Reson Imaging, vol.13, issue.1, p.82, 1995.

S. Alley, G. Gilbert, G. Wheeler-kingshott, and C. , Consensus acquisition protocol for quantitative MRI of the cervical spinal cord at 3T, Proceedings of the 26th Annual Meeting of the International Society for Magnetic Resonance in Medicine, p.799, 2018.

J. V. Manjón, P. Coupé, C. L. Buades, A. Collins, D. L. Robles et al., Diffusion Weighted Image Denoising Using Overcomplete Local PCA, PLOS ONE, vol.8, issue.9, p.73021, 2013.

E. Kellner, B. Dhital, V. G. Kiselev, and M. Reisert, Gibbs-ringing artifact removal based on local subvoxel-shifts, Magn Reson Med, vol.76, issue.5, pp.1574-1581, 2016.

B. De-leener, S. Lévy, and S. M. Dupont, SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data, NeuroImage, vol.145, pp.24-43, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01425488

J. Andersson, S. Skare, and J. Ashburner, How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging, NeuroImage, vol.20, issue.2, pp.870-888, 2003.

S. B. Reeder, B. J. Wintersperger, and O. Dietrich, Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: Application with cardiac imaging and a 32-channel cardiac coil, Magn Reson Med, vol.54, issue.3, pp.748-754, 2005.

B. De-leener, V. S. Fonov, D. L. Collins, V. Callot, N. Stikov et al., Unbiased multimodal template of the brainstem and spinal cord aligned with the ICBM152 space, NeuroImage, vol.165, pp.170-179, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01657949

S. Lévy, M. Benhamou, C. Naaman, P. Rainville, V. Callot et al., White matter atlas of the human spinal cord with estimation of partial volume effect, NeuroImage, vol.119, pp.262-271, 2015.

B. De-leener, S. Kadoury, J. Cohen-adad, and . Robust, accurate and fast automatic segmentation of the spinal cord, NeuroImage, vol.98, pp.528-536, 2014.

C. S. Perone, E. Calabrese, and J. Cohen-adad, Spinal cord gray matter segmentation using deep dilated convolutions, Sci Rep, vol.8, issue.1, p.5966, 2018.

L. A. Gillilan, The arterial blood supply of the human spinal cord, J Comp Neurol, vol.110, issue.1, pp.75-103, 1958.

N. L. Martirosyan, J. S. Feuerstein, N. Theodore, D. D. Cavalcanti, R. F. Spetzler et al., Blood supply and vascular reactivity of the spinal cord under normal and pathological conditions: a review, J Neurosurg Spine, vol.15, issue.3, pp.238-251, 2011.

O. Hassler, Blood supply to human spinal cord: a microangiographic study, Arch Neurol, vol.15, issue.3, pp.302-307, 1966.

H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-723, 1974.

A. A. Lammertsma, C. Rhodes, and D. Perani, Cerebral blood flow, blood volume and oxygen utilization: normal values and effect of age, Brain, vol.113, issue.1, pp.27-47, 1990.

N. Stikov, J. D. Trzasko, and M. A. Bernstein, Reproducibility and the future of MRI research, Magn Reson Med, 2019.

D. S. Novikov, V. G. Kiselev, and S. N. Jespersen, On modeling, Magn Reson Med, vol.79, issue.6, pp.3172-3193, 2018.

R. P. Kennan, J. Gao, J. Zhong, and J. C. Gore, A general model of microcirculatory blood flow effects in gradient sensitized MRI, Med Phys, vol.21, issue.4, pp.539-545, 1994.

R. M. Henkelman, J. J. Neil, and Q. Xiang, A quantitative interpretation of IVIM measurements of vascular perfusion in the rat brain, Magn Reson Med, vol.32, issue.4, pp.464-469, 1994.

T. Q. Duong and S. Kim, In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain, Magn Reson Med, vol.43, issue.3, pp.393-402, 2000.

G. Fournet, J. Li, A. M. Cerjanic, B. P. Sutton, L. Ciobanu et al., A two-pool model to describe the IVIM cerebral perfusion, J Cereb Blood Flow Metab, vol.37, issue.8, pp.2987-3000, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01429440

A. Wetscherek, B. Stieltjes, and F. B. Laun, Flow-compensated intravoxel incoherent motion diffusion imaging, Magn Reson Med, vol.74, issue.2, pp.410-419, 2015.

M. J. Schneider, T. Gaass, J. Ricke, J. Dinkel, and O. Dietrich, Assessment of intravoxel incoherent motion MRI with an artificial capillary network: analysis of biexponential and phase distribution models, Magn Reson Med, vol.00, pp.1-12, 2019.

W. J. Gardner, Hydrodynamic mechanism of syringomyelia: its relationship to myelocele, J Neurol Neurosurg Psychiatry, vol.28, issue.3, p.247, 1965.

C. Federau, P. Hagmann, and P. Maeder, Dependence of Brain Intravoxel Incoherent Motion Perfusion Parameters on the Cardiac Cycle, Hendrikse J, ed. PLOS ONE, vol.8, issue.8, p.72856, 2013.

O. Jalnefjord, M. Montelius, G. Starck, and M. Ljungberg, Optimization of b value schemes for estimation of the diffusion coefficient and the perfusion fraction with segmented intravoxel incoherent motion model fitting, Magn Reson Med, vol.00, pp.1-12, 2019.

J. J. Neil and G. L. Bretthorst, On the use of bayesian probability theory for analysis of exponential decay date: An example taken from intravoxel incoherent motion experiments, Magn Reson Med, vol.29, issue.5, pp.642-647, 1993.

C. Ye, D. Xu, and Y. Qin, Estimation of intravoxel incoherent motion parameters using low b-values. Vegh V, PLOS ONE, vol.14, issue.2, p.211911, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02071723

P. T. While, A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI: Bayesian Fitting Approaches to IVIM Modeling in DWI, Magn Reson Med, vol.78, issue.6, pp.2373-2387, 2017.

. Intra-voxel, Incoherent Motion at 7T to quantify human spinal cord perfusion: limitations and promises

, Thorsten Feiweier, vol.6, p.4

, Supporting Information

A. Univ, C. Cnrs, and M. , CEMEREM

A. Univ, . Ifsttar, and M. Lba, France 4 iLab-Spine International Associated Laboratory

S. Siemens-healthcare,

G. Siemens-healthcare,

V. Callot, C. , and A. Université, Hôpital Universitaire Timone 27 bd Jean Moulin 13385 Marseille cedex 05