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Abstract

Introduction Plant and crop metabolomic analyses may be used to study metabolism across genetic and environmental
diversity. Complementary analytical strategies are useful for investigating metabolic changes and searching for biomarkers
of response or performance.

Methods and objective3 he experimental material consisted in eight sun ower lines with two line status, four restorers (R,
used as males) and four maintainers (B, corresponding to females) routinely used for sun ower hybrid varietal production,
respectively to complement or maintain the cytoplasmic male sterility PET1. These lines were either irrigated at full soil
capacity (WW) or submitted to drought stress (DS). Our aim was to combine targeted and non-targeted metabolomics to
characterize sun ower leaf composition in order to investigate the e ect of line status genotypes and environmental condi-
tions and to nd the best and smallest set of biomarkers for line status and stress response using a custom-made process
variables selection.

ResultsFive hundred and eighty-eight metabolic variables were measured by using complementary analytical methods such
as'H-NMR, MS-based pro les and targeted analyses of major metabolites. Based on statistical analyses, a limited number of
markers were able to separate WW and DS samples in a more discriminant manner than previously published physiological
data. Another metabolic marker set was able to discriminate line status.

ConclusionThis study underlines the potential of metabolic markers for discriminating genotype groups and environmental
conditions. Their potential use for prediction is discussed.

KeywordsMetabolic markers - Metabolomics - Sun ower - Water stress - Maintainer—restorer lines

Abbreviations DS Drought stressed
AQC 6-Aminoquinolyl-N-succinimidyl DW Dry weight
carbamate FAMES Fatty acid methyl esters
AUC Area under curve LASSO Least absolute shrinkage and selec-
B Maintainer line tion operator
CID Carbon isotope discrimination LC-ESI-QTOF-MS Liquid chromatography—electro-
CVv Cross-validation spray-ionization—time-of- ight—
DAG Days after germination mass spectrometry
NMR Nuclear magnetic resonance
OSM_POT Osmotic potential
Electronic supplementary materidhe online version of this PCA Principal component analysis
article (https://doi.org/_lO.10(_)7/5_1130_6-019-1515-4) <_:ontains PET Petiolaris
supplementary material, which is available to authorized users. .
PLS Partial least squares
*  Olivier Fernandez PLS-DA Partial least squares discriminant
olivier.fernandez@univeims.fr analysis
Extended author information available on the last page of the article R Restorer line
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SLA Speci c leaf area Therefore, the B line is widely used for phenotypic and agro-
VIP Variable importance in the nomic description of the line.

projection Since the introduction of hybrid varieties, sun ower has
WW Well-watered undergone an active breeding process (Vear 2016), mainly

thanks to molecular marker-assisted selection. Hybrids have
been selected with increased resistance to downy mildew
(Qi et al. 2016), sclerotinia (Talukder et al. 2014) and water
1 Introduction stress (Marchand et al. 2013; Owart et al. 2014), although
sun ower is often cited as moderately drought-tolerant (Hus-
Sun ower (Helianthus annuus.) is the fourth major crop sain et al. 2018 This selection process will bene t from
providing seed for oil production worldwide. In 2016, the recent sequencing of the maintainer inbred line XRQ
world production reached 45 MT from 26 Mha, principally (Badouin et al. 2017). As part of these selection e orts, our
in Europe (around 70%), Ukraine being the world leadegroup is currently involved in searching for metabolic mark
(Oilworld 2016; Hussain et al. 2018). Worldwide produc ers of sun ower performance. A de nition of biomarkers
tion has increased constantly ever since (Oilworld 2016)and their sub-category metabolic markers) emerged from
Sun ower accounts for more than 50% of total world tablethe eld of medicine as a characteristic objectively measured
oil consumption. Additionally, its high biodegradability to indicate a given biologic, pathologic or pharmacologic
makes it suitable for non-alimentary uses such as in paintesponse (Fernandez et al. 2016). In plant science, meta-
and bioplastics. bolic markers have been de ned as metabolites or groups
Native to North America and introduced into Europeof metabolites that are measured to predict or discriminate
in the sixteenth century, sun ower became a major croplant responses or performance (Fernandez et al. 2016).
in this area in the early 1960s. Further development wakhe use of metabolic markers to predict criteria of plant
achieved after the introduction of hybrid varieties in theperformance is recent, with pioneering papers dating from
early 1980s. Hybrid varieties are based on the use of cytthe early 2010s (Meyer et al. 2007; Riedelsheimer et al.
plasmic male-sterile (CMS) lines (Vear 2016), like many2012). The possibilities o ered by these markers in plant
other crops (Chen and Liu 2014). The male sterility used faselection processes were reviewed recently and a pipeline
sun ower hybrid production, called PET1-CMS, was rst to search and use them has been proposed (Fernandez et al.
identi ed from an interspeci ¢ cross between Helianthus2016). The authors emphasized that the search for meta-
petiolaris and H. annuus. It results from the reorganizatiobolic markers requires a rst step of analysis on a small
of mitochondrial DNA that generated a new open readingore set of genotypes. The present article investigates this
frame ORFH522 co-transcribed with aptl gene and codingst step, which includes (1) testing the analytic pipeline to
a 16 kDa protein. This leads to modi ed mitochondrial func-establish the dynamic range of targeted metabolites, (2) con-
tions and a ects pollen development (Balk and Leaver 2001yming the presence of several secondary or “specialized”
through a decline in the mitochondrial membrane integritynetabolites (as de ned by Hartmann 2007; Pichersky and
and the respiratory control ratio. The mitochondrial pro{iewinsohn2011) and (3) investigating which metabolites
tein ORFH522 appears to be expressed in all tissues, bare essential for di erentiating groups of samples such as, in
the deleterious phenotype associated with PET1-CMS hagir case, water treatment (well-watered, WW, vs. drought-
been thought to be limited to the anthers, and no apparestiessed, DS) and line status (maintainer, B, vs. restorer, R).
extra phenotypes have been found in other organs (Horn amtlese metabolites could later serve as metabolic markers.
Friedt1999; Balk and Leavet001). Furthermore, we tested di erent statistical methods for vari-
To complement the mutational e ect, a nuclear restoraable selection in order to nd the best and smallest sets of
tion gene (noted Rf1) is used in sun ower hybrid productionmetabolite markers. Indeed, for a given agronomical trait,
Restoration genes are nuclear and generally encode tetrattie deployment of metabolic markers among breeders will
copeptides that are thought to transcriptionally control theepend on their cost (Fernandez efall6).
CMS mitochondrial gene (Chen and Liu 2014; Igarashi et al. For this purpose, we used a combination of targeted and
2016; Yu et al. 2016). Finally, sun ower hybrid production untargeted metabolomic analyses on sun ower leaf samples
is based on crossing a restorer line called R bearing a funsbtained from B or R lines and in WW and DS conditions.
tional restoration allele Rf1 (that recovers the PET1-CM®ur results show that a limited number of markers can
male-sterility phenotype) to a male-sterile PET1-CMS lineclearly di erentiate WW from DS samples and in a more
called A (carrying a recessive rfl allele). To maintain thigliscriminant manner than the physiological data presented in
male-sterile line, a maintainer line called B, isogenic to thBlanchet et al. (2018), which are classically used to discrimi-
A line, is also used. Each B line carries the rfl allele but inate individuals subjected to DS. To our surprise, another
male-fertile, as it does not carry the CMS-PET1 cytoplasmieaf metabolic marker set was able to discriminate B lines
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from R ones. Our data underline the potential of metaboli§tarch (Hendriks et aR003 and protein (Bradford976

markers for discriminating genotypes and environmentatontents were determined on the pellet. Assays were carried

conditions. Their potential use in sun ower breeding forout in 96-well microplates.

performance prediction is discussed. Individual free amino acid analysis was carried out using
an UPLC separation with uorescent detection after deri-
vatization using 6-aminoquinolyl-siuccinimidyl carbamate

2 Materials and methods (AQC)-tag (a method hereafter referred to as UPLC-Fluo).

For lipid analysis, fatty acid methyl esters (FAMES)
The protocols used are detailed in Online Resource 1 amgtre measured after hydrolysis of 20 mg dry weight (DW)

summarized here. with 2.5%H,SO, (v/v) in methanol. GC-FID was per
formed using an Agilent 7890 gas chromatograph (Agilent,
2.1 Plant material and growth conditions Santa Clara, California) equipped with a Carbowax column

(15 mx 0.53 mm, 1.2 um; Alltech Associates, Deer eld, IL,
The experiment was performed in 2013 in the phenotypingSA) and ame ionization detection. FAMES were identi-
platform “Heliaphen” (Gosseau et al. 2018). Eight sun ower ed by comparing their retention times with commercial
lines, four B and four R lines, were grown in two conditiondatty acid standards (Sigma, Saint-Quentin Fallavier, France)
(WW and DS) with three replicates, leading to a total of 4&nd quanti ed using ChemStation (Agilent).
samples. Irrigation was stopped at 38 days after germination
(DAG; Schneiter and Miller 1981) for DS plants. Soil evapo2.4 *H-NMR analysis of major polar compounds
ration was estimated according to Marchand et al. (2013).
Both WW and DS plants were weighed four times per day biolar metabolites were extracted from lyophilized powder
the Heliaphen robot to estimate plant transpiration (Gosse&d0 mg DW per biological replicate) with an ethanol-water
et al.2018. At 47 DAG, leaves for metabolomic analysesseries (80/20, 50/50, 0/100 v/v) at 80 °C as described in
were harvested without their petiole and frozen in liquidDeborde et al. (2009) with modi cations. This three-step
nitrogen. Two other leaves (mature and young leaves) weextraction process (ethanol-water series) was chosen to take
harvested for physiological trait measurements. During thimto account the diverse a nities and solubilities of leaf
experiment, two samples were excluded before leaf sammajor polar compounds (i.e. sugars, organic acids, amino-
pling (excessive irrigation was detected when analysing nahcids) for ethanol or water, in order to obtain an accurate
Heliaphen readings) and four samples could not be analyse@w of these compounds in leaf extracts. The 1D (cpmg
because of insu cient powder quantity. This resulted in aand single-pulse) spectra were processed using the-NMR

total of 42 samples submitted to metabolic analyses. ProcFlow application v1.1 (Jacob et al. 20&&p://nmrpr
oc ow.org/). For the cpmg dataset, this resulted in 479 nor
2.2 Physiological trait measurements for plant malized variables corresponding to spectral regions (named
phenotyping Unk_ppm:number in Online Resource 2) which included

compounds that were annotated later on. The assignments
Plant and leaf physiological data are part of a larger dataset metabolites in théH-nuclear magnetic resonance (NMR)
presented in Blanchet et al. (2018). Speci c leaf area (SLA$pectra were made by comparing the proton chemical shifts
was determined according to Allinne et al. (2009). Both leadvith public or local spectral databases and by spiking the
osmoatic potential (OSM_POT) and leaf osmotic potential asamples with the corresponding commercial compounds. 2D
full turgor (OSM_POT_100) were measured as describeexperiments were performed on a representative selected
in Poormohammad Kiani et al. (2007). To assess carbagxtract taken from the WW condition. Quanti cation of 11
isotope discrimination (CID), samples were oven-driedidenti ed compounds was performed by using quanti ed
ground, weighed and analysed using a continuous low issingle-pulse spectra dataset and calibration curves.
tope ratio mass spectrometry at the Stable Isotope Platform
SHIVA (University of Toulouse, France). 2.5 LC-ESI-QTOF-MS untargeted analysis

of semi-polar metabolites

2.3 Targeted compound measurements

Ligquid chromatography—electrospray-ionization—time-of-
For each sample, about 20 mg fresh weight were extracteight—mass spectrometry (LC—ESI-QTOF-MS) pro ling
as in Hendriks et al. (2003). Sucrose, glucose, and fructosé aqueous methanol extracts containing 0.1% formic acid
(Jelitto et al. 1992), malate (NundeSi et al. 2007), citrate was performed with extracts obtained from 20 mg DW lyo-
(Tompkins and To aletti 1982) and glucose-6-P (Gibonphilized powder. An Ultimate 3000 HPLC (Dionex, Sun
et al.2002 were determined in the ethanolic supernatantyvale, CA, USA) was used to separate metabolites on a

13


http://nmrprocflow.org/
http://nmrprocflow.org/

56 Page 4 of 14 O. Fernandez et al.

reversed-phase C18 column using an acetonitrile gradient Resource 3—Fig. S1. We targeted these compounds because
acidi ed water. Metabolites were detected by using a hybridhey are (1) often considered as putative metabolic mark
quadrupole/time-of- ight mass spectrometer (micrOTOF-Q ers (Fernandez et al. 2016) and (2) valuable candidates for
Bruker Daltonics, Bremen, Germany). Electrospray ionizaa high-throughput metabolic marker approach, as they are
tion in positive mode was used to ionize the compound®asy and cheap to measure.

A quality control sample (QC) was injected after each set The concentrations of these 29 compounds were summed
of ten samples. The MS data were processed using XCMB8 estimate their contribution to leaf biomass. This yielded
(Smith et al. 2006) and R scripts for lItering. A total of about 45% of leaf dry mass. Glucose was found to be the
1519 features were detected and reduced to 540 metabatimjor soluble sugar. Its concentration (32—45 mgW)
variables after Itering. The corresponding MS-based variwas in the same range as that of sucrose, but 8-10 times
ables were named using their nominal masses in dalton ahajher than fructose depending on the chosen conditions.
retention time in seconds in Online Resource 2 (MxxxTyyy)Glutamate, alanine and serine were found to be the most
Metabolite identi cation was performed using the accurateabundant amino acids. In leaves, linolenic acid (C18:3) was
mass data and Orbitrap (Thermo Fisher, Villebon-sur-Yvettehe most abundant fatty acid (7.5-18.6 mg BW), fol-
France) MS and MS/MS data of a representative samplewed by linoleic acid (Figl).

extract. 'H-NMR pro ling was performed on polar extracts to
further analyse metabolites from primary metabolism in the
2.6 Statistical analyses millimolar range. Four hundred and seventy-nine regions

were observed in th#H-NMR cpmg dataset, of which 20
All statistical analyses were performed using the R Softtompounds were annotated (Online Resource 4). Eleven
ware (http://www.r-project.org/), the R package mixOmicddenti ed compounds were measured and quanti ed with the
(Rohart et al. 2017) and the BioStatFlow online tool (bio*H-NMR quantitative single-pulse dataset, but only nine of
stat ow.org) which is based on R scripts. Two-way ANOVA them were kept in the nal dataset to avoid redundancy with
with FDR correction was performed to highlight line statugargeted spectrophotometric measurements. When summed,
or water-treatment e ects and interaction. The parametethese compounds represented an additional 5% of the leaf
used for partial least squares-discriminant analysis (PLSky mass (Online Resource 4).
DA) in BioStatFlow were adjusted to a tenfold cross-valida- LC-ESI-QTOF-MS analysis of semi-polar extracts was
tion (CV) to generate the model (and calculateQfeand  performed to analyse specialized metabolites. The most
200-randomized permutations to estimate the robustnessiotense peaks that were detected in the sample extracts,
the generated model. Some graphical outputs for PLS-DBased on their intensity in the XCMS table generated by a
were produced by mixOmics, using the same parameterslative area under curve (AUC) approach, were tentatively
than with BioStatFlow. An additional R script from Fu et al.annotated. Orbitrap-MS data were used in order to gain pre-
(2017) was used to perform least absolute shrinkage awsion on mass measurement and to perform MS/MS. Online
selection operator (LASSO) and sparse partial least squaResource 5 shows the annotation table generated using a
(sPLS) selection. Principal component analysis (PCA) antkpresentative spectrum of a leaf extract with annotation of
partial least square (PLS) were performed on data meathe most intense peaks. The two most intense peaks were
centred and scaled to unit variance. All statistical analysesnotated as mono and di-ca eoyl quinic acid. With a reten-
were performed on the data set in Online Resource 2 tion time around 17-20 min, several methylated avonoids
subsets of this le. were also detected. Finally, three smaller peaks ranging in

retention time from 15 to 17 min were found to putatively

represent sun ower sesquiterpenoids. Several peaks after
3 Results 25 min remained elusive.

Several metabolite concentrations di ered between the
3.1 Sun ower leaf metabolic contents measured conditions, as highlighted by a two-way ANOVA<.05
by targeted and untargeted approaches with FDR correction, Online Resource 6—Table S1a).

In total, 27 metabolites plus starch and protein content we&1.1 Di erence between DS and WW samples

targeted and quanti ed in sun ower leaf. Major soluble sug-

ars (i.e. the ones with the highest content), organic acidéhe most striking di erence was the large increase in each
and chlorophylls were quanti ed with spectrophotometricindividual amino acid concentration found for DS sam-
analyses. FAMES and free amino acids were measured ples, with an average increase of 15-fold, (Egy. Online
using GC-FID and UPLC- uo, respectively. These data ar&kesource 6—Table S1a). On the other hand, starch, protein
presented for the di erent conditions in Figand Online content, linolenic and palmitoleic acids were slightly but
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Fig. 1 Concentrations of 27 metabolites measured by targeted metMaintainer B lines (white bars) or restorer R lines (black bars}. Ver
ods (UPLC-Fluo for amino acids, GC-FID for FAMES, spectropho-tical bars represent standard deviations. Asterisk indicates variables
tometry for others) in leaf of B or R sun ower lines cultivated in two that were found signi cantly di erent between groups after two-way
conditions (WW and DS). Results are expressed in tgDyV in ANOVA test (p value <0.05)

the four types of samples. a WW (white bars) or DS (black bars).

signi cantly lower in DS (Fig.la; Online Resources 3—Fig (two-way ANOVA test; Online Resources 4 and 6—Tables
Sla and 6—Table Sla). Minor di erences in starch, proS1a). For the other nine compounds identi edHiNMR
tein, soluble sugars and GABA were observed between §ectra (amino acids and sugars), excellent correlations
and R lines (Figlb and Online Resource 3—Fig S1b) butwere found with spectrophotometric and chromatographic
none of them was statistically signi cant (Online Resourcdargeted methods (data not shown).
6—Table S1la). Finally, only a small group of m/z were signi cantly
Among the variables that were highly signi cant underdifferent under DS (Online Resource 6—Table S1la).
DS (two-way ANOVA test), most of them were uniden-Four of them were putatively annotated as heliannuol,
tified 'H-NMR spectra regions (Online Resource 6—3-O-ca eoylquinic acid, tryptophan and phenylalanine.
Table S1a). Among them, myo-inositol, glycine betaineThe last two were also detected by the UPLC- uc tar
and trigonelline were significantly higher under DS,geted method.
whereas chlorogenate and formate were signi cantly lower
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3.1.2 Di erence between B and R samples

Full data set
For the B and R lines, no targeted metabolites were sit 1048 variables

ni cantly di erent. Two unidenti ed *H-NMR variables
had a pvalue< 0.05 (Unk_6.8936 and Unk_3.8733, Online

Resource 6—Table Sla,) . However’ except for Ch|orogen Elimination of redundan tvariables (« curation »)
(RMN annotation, clustering and correlation >,85)

acid, most organic acids measured displayed a lower co
centration in R lines leaf samples (Flfy, Online Resource
4). Finally, the rest of the variables that were found signi - e
cantly di erent for line status were unidenti ed MS-based set
variables (Online Resource 6—Table S1a), except for tw SESNANERIES
putatively annotated avonoids (Online Resources 5 ani
6—Table Sla). Data filterin g — variable selectio n
ANOVA —sPLS - LASSO
3.2 Work ow for identifying metabolic markers
of water treatment and line status - I

Water treatment Line status
variables variables

The analytical methods allowed the generation of a matrix
1048 metabolic variables (Online Resource 2). This matri
included 27 targeted metabolites, starch, total protein conte T
and 9 annotatetH-NMR variables. The remaining variables PLS-DA
were composed oH-NMR unidenti ed spectral regions
and 540 MS-based S|-gnatqre_s. The matrlx was processﬁ‘a. 2 Description of the statistical analysis pipeline used in this arti-
through a three-step biostatistical pipeline to select the mogg

relevant variables to discriminate samples according to water

treatment and line status: (1) elimination of redundant varB—Fig. S2b), in the 2D space based on the rst two latent
ables, (2) variable selection for each sample cluster and (@riables. Predictive abilityQ?) and proportion of vari-

nal PLS-DA model calculation (Fig2). ance(R?) explained by the model were higher than 0.9 and
0.8 in both cases (Tablg, respectively. Each model was
3.2.1 Elimination of redundant metabolic variables considered as valid as it bo® andR? values above 0.4

and 0.5, respectively (Patil et al. 2016). However, in a high-
Since a single metabolite can be encompassed within sehroughput approach, it is impractical to measure more than
eral'H-NMR buckets or MS-based ions, we rst reduced500 variables to discriminate or predict cluster di erentia-
this full data set by hierarchical clustering (BioStatFlowtion. Therefore, our next step was to test a variable selection
Pearson correlation, average linkage as aggregation methopllocess and to assess the validity of group discrimination
Clusters were generated with a correlation threshold of 0.8@ith PLS-DA after this selection. PLS-DA was chosen to
Within each cluster, MS-based metabolic variables corresasily compare model performance usfgvalues.
sponding to adducts or isotopes were eliminated while the
one with the highest AUC was kept. Fét-NMR buckets, 3.2.2 Metabolic variable selection process
we used a similar process in order to keep buckets bearing
the highest AUC. After this curation process (Ag.the  To select variables, we compared three di erent methods
new dataset comprised 588 variables (Online Resource 7jor each condition (DS or line status), a generalised univari-

We then tested the discrimination potential of this curatedte method (one-way ANOVA) and two multivariate ones

data set on our sample groups using an unsupervised s(aPLS and LASSO penalty; Fu et al. (2017); Bg.The
tistical approach. PCA was rst carried out (FB). The  588-variable data matrix (Online Resource 7) was submit-
rst two components displayed in Figa (water treatment) ted to these methods and subsequent PLS-DAs were per
and Fig.3b (line status) explained 25% of the total vari formed. We compared th@? andR? to assess the quality
ability. The separation of our sample groups was incomef the variable selection process for each resulting PLS-DA
plete, although slightly better for DS. We then performednodel (Tablel). Since our objective was to nd the small-
a supervised method (PLS-DA) on this 588-variable dataest possible variable set, we analysed datasets of di erent
set for each type of sample group. Each PLS-DA analyskizes (90, 50 and 20 variables for water treatment; 35 and 20
was able to discriminate WW from DS samples (Onlinevariables for line status). We dimensioned the rst selected
Resource 3—Fig. S2a), and B from R lines (Online Resouratata set size according to the numbers of variables with a p
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;?eboll?ctlivioa:?)ﬁgl(z%r)] 2:1 g Variable selection  Condition Data setsize Q2 5e2aErX(f))/lo )var tl/ CV p-value
explained variance explained
(R?) of the di erent PLS-DA None Water treatment 588 Variables ~ 0.936  80.2 1.1E 04
models calculated with di erent Line status 588 Variables  0.916 89 3E 04
selected data sets
ANOVA Water treatment 90 Variables 0.964 83.70 3.04E 03
50 Variables 0.96 88.6 9.00E 05
20 Variables 0.974 83.7 2.71E03
Line status 35 Variables 0.911 75.60 1.12E 03
20 Variables 0.9 76.10 9.00E 05
LASSO Water treatment 90 Variables 0.982 88.90 1.47E 03
50 Variables 0.982 93.1 2.60E 04
20 Variables 0.985 88.90 1.47E 03
Line status 35 Variables 0.973 92 3.29E 03
20 Variables 0.978 94.30 6.00E 05
sPLS Water treatment 90 Variables 0.985 92.90 8.90E 03
50 Variables 0.992 96.40 6.00E 04
20 Variables 0.988 92.90 4.90E 03
Line status 35 Variables 0.97 82.30 1.36E 03
20 Variables 0.934 79.60 5.00E 04
Custom Water treatment 8 Variables 0.96 85.9 6.00E 05
Metabolites
6 Variables 0.686 53.9 3.00E 05
Physiological

Variable selection conditions, cluster and the number of variables used are indicated. Permutation robust-
ness was assessed with 200 CV cycles. The data set providing Righest highlighted in bold font

value< 0.05 following one-way ANOVA (90 for DS and 35 when using metabolic markers in a high-throughput manner
for line status). We then reduced the data set size down (eee discussions on practicality of metabolic markers in Fer
20, a reasonable number of metabolic variables to measurandez et aR016§. For DS, we chose to add an intermediate
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data set of 50 variable®?, R? and CV-Rvalues of indi- 3.2.3 Metabolic VIP analyses
vidual models are summarized in Talile

The randomized permutations for validation200 cycles)n PLS-DA, an important feature is the variable importance
of each bore a signi cant galue, thus demonstrating their in the projection (VIP) scores. High VIP-score variables
robustness (TablB. As expected, the resulting models com-strongly contribute to the PLS-DA model. Variables with
puted after the selection process displayed a highethen  VIP scores higher than 1 are listed in Online Resource 6.
compared to the previous PLS-DA performed with 588 variNo matter which variable selection process was applied,
ables (Tabld; Online Resource 3—Fig. S2). The ANOVA amino acids were overrepresented in the high VIP-score
selection process produced e cient models but with theshortlist, underlying their importance in discriminating
lowest@? in all situations (Tablé). SPLS and LASSO selec- DS and WW samples in our experiment (Online Resource
tion resulted in more discriminant models, the latter for lin6—Table S1b). Two other variables measurediNMR
status and the former for water treatment. The most e cientvere listed in the VIPs shortlist in nearly all conditions of
PLS-DA models are illustrated in Fig: 50 variables for variable selection: inositol and glycine-betaine (Online
water treatment (sPLS selection) and 20 variables for linResource 6—Table S1b). On the other hand, a small num-
status (LASSO selection) as well as PCA computed with thiger of LC-MS-based variables had VIP scores higher than
same data sets (Online Resource 3—Fig. S3). 1 (Online Resource 6—Table S1b). For line status dis-

crimination, all variables with VIP scores higher than 1
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Fig. 4 PLS-DA of metabolic data sets of sun ower leaf on variablesand DS (orange dots). b PLS model scores (left) and loadings plot
selected from the set of 588 metabolic variables (Online Resourdeight) of the 20 best LASSO selected variables discriminating the
7) after a selection process based on sPLS or LASSO. a PLS modelo-line types, B maintainer lines (red dots) and R restorer lines (blue
scores (left) and loadings plot (right) of the 50 best sPLS selectedbts). Coloured ellipses represent 95% con dence level

variables discriminating the two water treatments WW (green dots)
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were unidenti ed ions otH-NMR spectral regions (Online 4 Discussion
Resource 6—Table Sic).

4.1 Sun ower leaf metabolite composition
3.3 Cost-e cient metabolic markers

Sun ower is an important crop that provides most of the
Simplicity of measurement and cost-e ciency of metabolic table oil used worldwide. However, few metabolomic data
markers are arguably as important as their prediction capagre available to date concerning both its primary and special-
ity (Fernandez et al. 2016). In other words, measuring a sgled metabolism. We now present one of the largest sets of
of markers with a (slightly) lower predictive capacity mightprimary metabolites in adult sun ower leaf, with absolute
be relevant if the marker set is easier or cheaper to measugganti cation of 38 metabolites and with several compounds
A simple solution is often to replace untargeted methodgot quanti ed by Moschen et al. (2017) using GC-MS.
with targeted ones. We estimated the cost-reduction potential Several points can be made about sun ower leaf compo-
by a factor of 3-20 (Fernandez et20.16). Another pos- sition. Malate, citrate and chlorogenic acid were the major
sibility is to measure globally a family of compounds wherorganic acids (Figl, Online Resource 4) and linolenic acid,
they are a ected in the same way by a given treatment dinoleic acid and palmitic acid were the major fatty acids
condition, like in our case for amino acids in DS samplegetected. This is in contrast with the fatty acids in sun ower
(Fig. 1a). seed where linoleic acid is the most abundant. Serine, ala-

To illustrate this point, we selected metabolic variablegine and glutamate were the major free amino acids IFig.

(from Online Resource 7) known to be simple or cheap tGlucose and sucrose were the major soluble sugars in leaf
measure and relevant for water treatment discriminatiomut their concentrations were at least eight times higher than
Since all free amino acids measured were increased in Bfat of fructose. This might be due to some speci city of the
samples, we replaced them by a single variable representifiictose metabolism in the Asteraceae family. In sun ower,
their sum (hereafter called total free amino acids). Finallyfructose is not metabolized into inulin (a fructose-derived
we chose total free amino acids, citrate, glycine-betaine, ingolymer) but is transported and then accumulated in the stem.
sitol, sucrose, glucose, protein and starch. This set of eighbr example, Martinez-Noél et al. (2015) found that fructose
variables was o ered a clear determination of DS and WWyas three times more concentrated than any other soluble
samples in an unsupervised analysis (PCA, $&y. Addi-  sugar in this organ. This might explain the di erence between
tionally, the generated PLS-DA model was e cient with glucose and fructose concentrations in our leaf samples.
Q?=0.96, andR?=0.55 (Tablel, Online Resource 3—Fig  Considering the specialized metabolites detected via
S4a). We could not perform this approach for line statusC-ESI-QTOF-MS, the peaks presenting the highest inten-
since most of their high VIP-score variables were unidentisities were putatively annotated (Online Resource 5). They
ed metabolic signatures. include compounds from three families: ca eoylquinates,

methyl- avonoids and sesquiterpenoids. These compounds
3.4 Comparison with physiological variables for DS had all been previously detected in sun ower biochemical

markers analyses. Ca eoylquinic acid is a compound commonly

found in sun ower. It plays a role in ligni cation and cor
Physiological markers are used to assess the impact of R8ates with leaf age in sun ower (Koeppe et al. 1970). It
on plant. In our experiment, SLA, OSM_POT and CID wergs the dominant phenolic acid in sun ower orets (Liang
measured in young and mature leaves at the end of DS. &pal. 2013 and is also present in seeds (Karama et al.
test the quality of our PLS-DA model built with selected2012; Pedrosa et al. 2000). When present in sun ower oil,
metabolic variables, we compared its discriminative capacitya eoylquinates including oxidized chlorogenic acid can
with a PLS-DA model built with this physiological data- generate green-coloured oxidized complexes by reacting
set comprising six variables extracted from a larger datasgfith sun ower proteins (Wildermuth et &2016). This oxi-
published in Blanchet et al. (2018). Unsupervised PCA conmdative reaction between chlorogenic acid and proteins partly
puted with this dataset showed poor separation of DS argplains why sun ower proteins are still underused in the
WW samples (Fig5b). Furthermore, the PLS-DA model food industry, despite their qualities such as their cheapness
built with these physiological data displaye@%a=0.68 and  and absence of allergens (Wildermuth et al. 2016). Several
anR?*=0.54 (Tablel, Fig.4b), but was less e cient than putative methylated avonoids were also detected (Online
those built with the minimal set of eight metabolic variableRResource 5). These compounds have been used as chemot-
(¥=0.96,R?=0.55; Tablel, Online Resource 3—Fig S4a). axonomic markers for the Astereaceae family (Emerenciano

et al. 2001). Finally, speci ¢ sun ower sesquiterpenoids

were also detected, one of which was putatively identi ed
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Fig. 5 PCA scores plot generated with a an “easy-to-measure” dat@SM_POT and CID) measured the day before nal sampling. Left,
set (total free amino acids, citrate, glycine-betaine, inositol, glucosacores plot. Right, loadings plot
total proteins and starch) and b six physiological variables (SLA,

as niveusin. In sun ower, this compound and its derivativegl.3 Biomarkers of line status
are thought to o er potential as insecticides (Prasifka et al.

2015). Leaf samples of R and B lines were discriminated with the
metabolic data set mostly through unidenti ed markers
4.2 Variable selection process measured by LC-ESI-QTOF-MS (Online Resource 6—

Table S1c). R lines, which in sun ower breeding are used to
Variable selection is necessary in metabolomics, especialigstore the CMS phenotype, have a nuclear-encoded R gene
when looking for metabolic markers (Fernandez et al. 2016)hat might act as a transcriptional activator (Balk and Leaver
However, numerous methods can be used for the variab®®01; Chen and Liu 2014). The only known function of the
selection process and have already been the subject of dis-gene is to restore male fertility in CMS plants (Chen and
cussion (for review, Grissa et @016. We submitted our Liu 2014) as well as the associated changes restricted to the
initial dataset to three variable selection processes: ANOVAmitochondria of oral tissues linked with this loss of fertil-
sPLS and LASSO penalty. ity (i.e. mitochondrial membrane integrity and respiration
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ratio). Phenotypes associated with the presence of CM#Bnounts of glycine-betaine that are too low to signi cantly
or R genes are thought to be limited to oral tissues. Thémpact the sap osmotic potential. Rather, it might serve as
fact that we were able to discriminate R and B lines using ROS detoxication agent (Giri 2011). In the case of myo-
analyses of leaf metabolites suggests that the phenotypenssitol, Taji et al. (2006) suggested it might be involved in
not restricted to owers and that it might a ect other plantosmotolerance, or alternatively serve as a secondary messen-
tissues and organs. Interestingly, several organic acids weger involved in phospholipid signalling pathways. Finally,
less concentrated in R line samples, although not indivicca eoylquinates and sesquiterpenoids (a terpene class with
ually signi cantly. This might be due to an e ect on the three isoprene units) were also detected as putative mark
mitochondrial metabolism in all organs, but this hypothesigrs of DS versus WW samples (Online Resources 5 and 6).
needs to be con rmed. Further annotations of the associat€h eoylquinates have been associated with DS responses
markers would contribute to propose hypotheses about dirdat grapevine (Hochberg et al. 2013). Terpenes have been
or indirect Rgene e ects in leaf. Additionally, metabolomic shown to be involved in thermotolerance and antioxidant
markers denote intermediate information between genes aadects (Sharkey et aR008. Furthermore, terpenes seem to
nal phenotypes and might capture multilocus-controlledhave radical scavenging activity contributing to the mitiga-
traits and associate alleles producing the same nal pheion of oxidative damage during stresses. In sun ower leaf,
notype. The latter property would be interesting in breedgenes involved in terpene metabolism have been shown to be
ing programs to predict the restoration phenotype of novelpregulated under drought conditions (Moschen et al. 2017).
alleles in pre-breeding programs and therefore to identify
novel sources of restoration for the PET1. However, furthet.5 Towards a small e cient biomarker dataset
biochemical and statistical analyses with more R and B lines
are required since PLS-DA may be prone to over tting.  Fernandez et al. (2016) argued that ideal metabolic markers
should be easy and cheap to analyse. For this purpose, we
tested the discriminant capacity of a small metabolic marker
4.4 Biomarkers of water treatment set composed of eight biochemical variables: total free amino
acids, citrate, glycine-betaine, myo-inositol, sucrose, glucose,
The discrimination of WW and DS samples using metatotal proteins and starch. An unsupervised PCA clearly sepa-
bolic variables was more e cient than the discriminationrated WW and DS samples when these eight biochemical
of line status. Amino acids were clearly the best DS markvariables were used (Figa), but not with the physiological
ers in our dataset, displaying a 5- to 10-fold increase in D&ataset consisting in six common indicators of DS measured
sun ower leaves (Figla). Increases in amino acids underat plant level. Indeed, SLA, OSM_POT and CID (measured
DS in sun ower have already been documented, although tia both young and mature leaves) are often used to character
a lesser extent and in a cultivar-dependent manner (Marise the water—stress status of a given crop @Big.This was
vannan et al. 2007). This feature has also been detecteddon rmed when comparing? values for PLS-DA models
other crops such as barley (Lanzinger et al. 2015) and wheaimputed with each of these data sets (0.91 and 0.68 respec
(Bowne et al. 2012). Conversely, Moschen et al. (2017{ively). However, since amino acids were overrepresented in
found that the concentrations of several leaf amino acidsur PLS-DA model VIPs, our approach might not be general-
were decreased under DS in sun ower (Correia et al. 2005jzable to any given criterion. Indeed, reducing the number of
These contradictory results regarding amino acid responseariables was much less e cient in discriminating line status.
might be due to water—stress intensity, sampling stage &urthermore, given the fact that amino acid accumulation
di erences in nitrogen nutrition. In the present study, the usés not always reported for sun ower experiencing drought,
of Heliaphen high-throughput phenotyping platform allowedmore studies with various drought scenarios and more lines
the application of a precise and reproducible drought sceill be required to con rm our conclusions. Finding the right
nario that is available for more thorough understanding dfalance between cost reduction and prediction e ciency of
the impact of DS on leaf metabolism. Nevertheless, highezach metabolic marker set is likely an achievable goal in
concentrations of individual amino acids such as prolinenany situations but will certainly require optimisation for
and glycine have been detected in DS leaves (Moschen etehch performance criterion studied.
2017). Amino acids, and especially proline, might partici-
pate in osmotolerance under DS, although the case is highly
debated for the latter (Szabados and Sava0i®). 5 Conclusions
In our dataset, other metabolites appeared as good mark
ers of DS samples, i.e. glycine-betaine and myo-inositoMetabolic markers are a recent development in science.
Glycine-betaine is accumulated in various plants undeipplications such as personalized medicine have recently
abiotic stress (Giri 2011). Generally, plants accumulatattracted keen interest (Lindon and Nicholson 2014). Their
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use in agronomy as a potential tool for crop breeding is evéDompliance with ethical standards

more recent (Fernandez et2016. In the present work, we

show that a limited number of metabolic markers can dis@onflict of interestThe authors declare that they have no conict of
criminate plant sample groups with di erent characteristics'nterESt'

or treatment applications, especially in the case of DS. Thigesearch involving human and/or animal participants Fhidy did
feature was already noted at early stages of plant developpt involve the use of animal or human samples.

ment in maize (Riedelsheimer et al. 2012). The fact that

leaves of sun ower lines carrying di erent alleles of the Open Accesdhis article is distributed under the terms of the Crea-
CMS restoration gene were separated by this approach shaive Commons Attribution 4.0 International License (http://creativeco

that metabolomics can reveal an unsuspected metabolic pﬁrémons.orgllicenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate

notype in a given organ. The present work also emphasizgsit to the original author(s) and the source, provide a link to the

the importance of variable selection. The pipeline we proereative Commons license, and indicate if changes were made.

pose (Fig2) may not be optimised for all situations (sam-

ple numbers, organ types, analytical approaches...), but will

provide a preliminary guideline for future users. Another

important point is the speci city of the list of selected mark References
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