Y. Arfi, M. Shamshoum, I. Rogachev, Y. Peleg, and E. A. Bayer, Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation, Proceedings of the National Academy of Sciences, vol.111, issue.25, pp.9109-9114, 2014.

L. Artzi, E. A. Bayer, and S. Moraïs, Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides, Nature Reviews Microbiology, vol.15, issue.2, pp.83-95, 2016.

R. Borne, E. A. Bayer, S. Pagès, S. Perret, and H. Fierobe, Unraveling enzyme discrimination during cellulosome assembly independent of cohesin-dockerin affinity, FEBS Journal, vol.280, issue.22, pp.5764-5779, 2013.

P. Bule, V. D. Alves, V. Israeli-ruimy, A. L. Carvalho, L. M. Ferreira et al., Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes, Scientific Reports, vol.7, issue.1, p.759, 2017.

K. Cameron, J. Y. Weinstein, O. Zhivin, P. Bule, S. J. Fleishman et al., Combined Crystal Structure of a Type I Cohesin, Journal of Biological Chemistry, vol.290, issue.26, pp.16215-16225, 2015.

K. Cameron, J. Y. Weinstein, O. Zhivin, P. Bule, S. J. Fleishman et al., Combined Crystal Structure of a Type I Cohesin, Journal of Biological Chemistry, vol.290, issue.26, pp.16215-16225, 2015.

Y. J. Choi, L. Morel, T. Le-franã¯â¿â½ois, D. Bourque, L. Bourget et al., Novel, Versatile, and Tightly Regulated Expression System for Escherichia coli Strains, Applied and Environmental Microbiology, vol.76, issue.15, pp.5058-5066, 2010.

S. K. Collinson, L. Emödy, K. H. Müller, T. J. Trust, and W. W. Kay, Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis., Journal of Bacteriology, vol.173, issue.15, pp.4773-4781, 1991.

H. P. Fierobe, A. Mechaly, C. Tardif, A. Belaich, R. Lamed et al., Design and Production of Active Cellulosome Chimeras, Journal of Biological Chemistry, vol.276, issue.24, pp.21257-21261, 2001.

H. P. Fierobe, S. Pagès, A. Bélaïch, S. Champ, D. Lexa et al., Cellulosome fromClostridium cellulolyticum: Molecular Study of the Dockerin/Cohesin Interaction?, Biochemistry, vol.38, issue.39, pp.12822-12832, 1999.

H. Fierobe, E. A. Bayer, C. Tardif, M. Czjzek, A. Mechaly et al., Degradation of Cellulose Substrates by Cellulosome Chimeras, Journal of Biological Chemistry, vol.277, issue.51, pp.49621-49630, 2002.

H. Fierobe, E. A. Bayer, C. Tardif, M. Czjzek, A. Mechaly et al., Degradation of Cellulose Substrates by Cellulosome Chimeras, Journal of Biological Chemistry, vol.277, issue.51, pp.49621-49630, 2002.

H. Fierobe, F. Mingardon, A. Mechaly, A. Bélaïch, M. T. Rincon et al., Action of Designer Cellulosomes on HomogeneousVersusComplex Substrates, Journal of Biological Chemistry, vol.280, issue.16, pp.16325-16334, 2005.

P. Goyal, P. V. Krasteva, N. Van-gerven, F. Gubellini, I. Van-den-broeck et al., Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG, Nature, vol.516, issue.7530, pp.250-253, 2014.

M. Gu, J. Wang, W. Liu, Y. Zhou, and B. Ye, Expression and Displaying of ?-Glucosidase from Streptomyces Coelicolor A3 in Escherichia coli, Applied Biochemistry and Biotechnology, vol.170, issue.7, pp.1713-1723, 2013.

N. D. Hammer, J. C. Schmidt, and M. R. Chapman, The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization, Proceedings of the National Academy of Sciences, vol.104, issue.30, pp.12494-12499, 2007.

M. Li, Y. Yue, Z. Zhang, Z. Wang, T. Tan et al., Site-Specific and High-Loading Immobilization of Proteins by Using Cohesin?Dockerin and CBM?Cellulose Interactions, Bioconjugate Chemistry, vol.27, issue.7, pp.1579-1583, 2016.

F. Mingardon, A. Chanal, A. M. L�pez-contreras, C. Dray, E. A. Bayer et al., Incorporation of Fungal Cellulases in Bacterial Minicellulosomes Yields Viable, Synergistically Acting Cellulolytic Complexes, Applied and Environmental Microbiology, vol.73, issue.12, pp.3822-3832, 2007.

M. Mroueh, M. Aruanno, R. Borne, P. De-philip, H. Fierobe et al., The xyl-doc gene cluster of Ruminiclostridium cellulolyticum encodes GH43- and GH62-?-l-arabinofuranosidases with complementary modes of action, Biotechnology for Biofuels, vol.12, issue.1, p.144, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02197666

A. A. Nenninger, L. S. Robinson, N. D. Hammer, E. A. Epstein, M. P. Badtke et al., CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation, Molecular Microbiology, vol.81, issue.2, pp.486-499, 2011.

A. A. Nenninger, L. S. Robinson, and S. J. Hultgren, Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF, Proceedings of the National Academy of Sciences, vol.106, issue.3, pp.900-905, 2009.

S. Pagès, A. Bélaïch, J. Bélaïch, E. Morag, R. Lamed et al., Species-specificity of the cohesin-dockerin interaction betweenClostridium thermocellum andClostridium cellulolyticum: Prediction of specificity determinants of the dockerin domain, Proteins: Structure, Function, and Genetics, vol.29, issue.4, pp.517-527, 1997.

S. Pagès, A. Bélaïch, H. P. Fierobe, C. Tardif, C. Gaudin et al., Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium 22 cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXp, J. Bacteriol, vol.181, pp.1801-1810, 1999.

S. Pagès, O. Valette, L. Abdou, A. Bélaïch, and J. Bélaïch, A rhamnogalacturonan lyase in the Clostridium cellulolyticum cellulosome, J. Bacteriol, vol.185, pp.4727-4733, 2003.

B. Ramesh, V. G. Sendra, P. C. Cirino, and N. Varadarajan, Single-cell Characterization of Autotransporter-mediatedEscherichia coliSurface Display of Disulfide Bond-containing Proteins, Journal of Biological Chemistry, vol.287, issue.46, pp.38580-38589, 2012.

J. Ravachol, R. Borne, I. Meynial-salles, P. Soucaille, S. Pagès et al., Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum, Biotechnology for Biofuels, vol.8, issue.1, p.114, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01452056

J. Ravachol, R. Borne, C. Tardif, P. De-philip, and H. Fierobe, Characterization of All Family-9 Glycoside Hydrolases Synthesized by the Cellulosome-producing BacteriumClostridium cellulolyticum, Journal of Biological Chemistry, vol.289, issue.11, pp.7335-7348, 2014.

J. Ravachol, P. De-philip, R. Borne, P. Mansuelle, M. J. Maté et al., Mechanisms involved in xyloglucan catabolism by the cellulosome-producing bacterium Ruminiclostridium cellulolyticum, Scientific Reports, vol.6, issue.1, p.22770, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01440763

L. S. Robinson, E. M. Ashman, S. J. Hultgren, and M. R. Chapman, Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein, Molecular Microbiology, vol.59, issue.3, pp.870-881, 2006.

U. Ro?mling, Z. Bian, M. Hammar, W. D. Sierralta, and S. Normark, Curli Fibers Are Highly Conserved between Salmonella typhimurium and Escherichia coli with Respect to Operon Structure and Regulation, Journal of Bacteriology, vol.180, issue.3, pp.722-731, 1998.

L. J. Shimon, S. Yaron, Y. Shoham, R. Lamed, E. Morag et al., COHESIN-2 DOMAIN OF THE CELLULOSOME FROM CLOSTRIDIUM THERMOCELLUM, Struct. Lond. Engl, vol.5, pp.381-390, 1997.

S. Spinelli, H. P. Fierobe, A. Belaich, J. Belaich, B. Henrissat et al., COHESIN MODULE FROM THE CELLULOSOME OF CLOSTRIDIUM CELLULOLYTICUM, J. Mol. Biol, vol.304, pp.189-200, 2000.

S. W. Stahl, M. A. Nash, D. B. Fried, M. Slutzki, Y. Barak et al., Single-molecule dissection of the high-affinity cohesin-dockerin complex, Proceedings of the National Academy of Sciences, vol.109, issue.50, pp.20431-20436, 2012.

J. Stern, S. Moraïs, R. Lamed, and E. A. Bayer, Adaptor Scaffoldins: An Original Strategy for Extended Designer Cellulosomes, Inspired from Nature, mBio, vol.7, issue.2, p.83, 2016.

T. Tanaka, H. Kawabata, C. Ogino, and A. Kondo, Creation of a Cellooligosaccharide-Assimilating Escherichia coli Strain by Displaying Active Beta-Glucosidase on the Cell Surface via a Novel Anchor Protein, Applied and Environmental Microbiology, vol.77, issue.17, pp.6265-6270, 2011.

J. Tormo, R. Lamed, A. J. Chirino, E. Morag, E. A. Bayer et al., Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose., The EMBO Journal, vol.15, issue.21, pp.5739-5751, 1996.

N. Van-gerven, P. Goyal, G. Vandenbussche, M. De-kerpel, W. Jonckheere et al., Secretion and functional display of fusion proteins through the curli biogenesis pathway, Molecular Microbiology, vol.91, issue.5, pp.1022-1035, 2014.

S. Yaron, E. Morag, E. A. Bayer, R. Lamed, and Y. Shoham, Expression, purification and subunit-binding properties of cohesins 2 and 3 of theClostridium thermocellumcellulosome, FEBS Letters, vol.360, issue.2, pp.121-124, 1995.