D. P. Bartel, MicroRNAs: Genomics, biogenesis, mechanism, and function, Cell, vol.116, pp.281-297, 2004.

R. C. Lee and R. L. Feinbaum, Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, vol.75, pp.843-854, 1993.

B. Wightman, I. Ha, and G. Ruvkun, Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans, Cell, vol.75, pp.855-862, 1993.

H. Guo, N. T. Ingolia, J. S. Weissman, and D. P. Bartel, Mammalian microRNAs predominantly act to decrease target mRNA levels, Nature, vol.466, pp.835-840, 2010.

J. Han, Y. Lee, K. Yeom, Y. Kim, H. Jin et al., The Drosha-DGCR8 complex in primary microRNA processing, Genes Dev, vol.18, pp.3016-3027, 2004.

H. Siomi and M. C. Siomi, Posttranscriptional regulation of microRNA biogenesis in animals, Mol. Cell, vol.38, pp.323-332, 2010.

R. C. Friedman, K. K. Farh, .. Burge, C. B. Bartel, and D. P. , Most mammalian mRNAs are conserved targets of microRNAs, Genome Res, vol.19, pp.92-105, 2009.

W. Gu, Y. Xu, X. Xie, T. Wang, J. Ko et al., The role of RNA structure at 5 untranslated region in microRNA-mediated gene regulation, RNA, vol.20, pp.1369-1375, 2014.

I. Lee, S. S. Ajay, J. I. Yook, H. S. Kim, S. H. Hong et al., New class of microRNA targets containing simultaneous 5 -UTR and 3 -UTR interaction sites

, Genome Res, vol.19, pp.1175-1183, 2009.

J. J. Forman and H. A. Coller, The code within the code: microRNAs target coding regions, Cell Cycle, vol.9, pp.1533-1541, 2010.

M. Selbach, B. Schwanhäusser, N. Thierfelder, Z. Fang, R. Khanin et al., Widespread changes in protein synthesis induced by microRNAs, Nature, vol.455, pp.58-63, 2008.

A. Grimson, K. K. Farh, .. Johnston, W. K. Garrett-engele, P. Lim et al., MicroRNA targeting specificity in mammals: Determinants beyond seed pairing, Mol. Cell, vol.27, pp.91-105, 2007.

J. G. Doench and P. A. Sharp, Specificity of microRNA target selection in translational repression, Genes Dev, vol.18, pp.504-511, 2004.

N. Bushati and S. M. Cohen, MicroRNA functions, Annu. Rev. Cell Dev. Biol, vol.23, pp.175-205, 2007.

F. Parodi, R. Carosio, M. Ragusa, C. Di-pietro, M. Maugeri et al., Epigenetic dysregulation in neuroblastoma: A tale of miRNAs and DNA methylation, Biochim. Biophys. Acta, vol.1859, pp.1502-1514, 2016.

M. M. Hossain, M. M. Sohel, K. Schellander, and D. Tesfaye, Characterization and importance of microRNAs in mammalian gonadal functions, Cell Tissue Res, vol.349, pp.679-690, 2012.

P. Pallante, S. Battista, G. M. Pierantoni, and A. Fusco, Deregulation of microRNA expression in thyroid neoplasias, Nat. Rev. Endocrinol, vol.10, pp.88-101, 2014.

A. Derghal, M. Djelloul, J. Trouslard, and L. Mounien, An Emerging Role of micro-RNA in the Effect of the Endocrine Disruptors, Front. Neurosci, vol.10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01471933

R. J. Frost and E. Olson, Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs, Proc. Natl. Acad. Sci, vol.108, pp.21075-21080, 2011.

J. Krützfeldt and M. Stoffel, MicroRNAs: A new class of regulatory genes affecting metabolism, Cell Metab, vol.4, pp.9-12, 2006.

C. L. Ogden, M. D. Carroll, B. K. Kit, and K. M. Flegal, Prevalence of obesity in the United States, NCHS Data Brief, vol.82, pp.1-8, 2009.

D. W. Haslam, W. P. James, and . Obesity, Lancet, vol.366, pp.1197-1209, 2005.

S. I. Berndt, S. Gustafsson, R. Mägi, A. Ganna, E. Wheeler et al., Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture, Nat. Genet, vol.45, pp.501-512, 2013.

T. Kunej, D. Jevsinek-skok, M. Zorc, A. Ogrinc, J. J. Michal et al., Obesity gene atlas in mammals, J. Genom, vol.1, pp.45-55, 2013.

R. J. Loos and G. S. Yeo, The bigger picture of FTO: The first GWAS-identified obesity gene, Nat. Rev. Endocrinol, vol.10, pp.51-61, 2014.

Q. Jiang, Y. Wang, Y. Hao, L. Juan, M. Teng et al., miR2Disease: A manually curated database for microRNA deregulation in human disease, Nucleic Acids Res, vol.37, pp.98-104, 2009.

O. Dumortier, C. Hinault, and E. Van-obberghen, MicroRNAs and metabolism crosstalk in energy homeostasis, Cell Metab, vol.18, pp.312-324, 2013.

J. D. Palmer, B. P. Soule, B. A. Simone, N. G. Zaorsky, L. Jin et al., MicroRNA expression altered by diet: Can food be medicinal?, Ageing Res. Rev, vol.17, pp.16-24, 2014.

M. L. Slattery, J. S. Herrick, L. E. Mullany, J. R. Stevens, and R. K. Wolff, Diet and lifestyle factors associated with miRNA expression in colorectal tissue, Pharmgenomics Pers. Med, vol.10, pp.1-16, 2017.

A. Derghal, M. Djelloul, J. Trouslard, and L. Mounien, The Role of MicroRNA in the Modulation of the Melanocortinergic System, Front. Neurosci, vol.11, p.181, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01762644

G. J. Morton, D. E. Cummings, D. G. Baskin, G. S. Barsh, and M. W. Schwartz, Central nervous system control of food intake and body weight, Nature, vol.443, pp.289-295, 2006.

N. Balthasar, R. Coppari, J. Mcminn, S. M. Liu, C. E. Lee et al., Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis, Neuron, vol.42, pp.983-991, 2004.

R. Coppari, M. Ichinose, C. E. Lee, A. E. Pullen, C. D. Kenny et al., The hypothalamic arcuate nucleus: A key site for mediating leptin's effects on glucose homeostasis and locomotor activity, Cell Metab, vol.1, pp.63-72, 2005.

H. Dhillon, J. M. Zigman, C. Ye, C. E. Lee, R. A. Mcgovern et al., Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis, Neuron, vol.49, pp.191-203, 2006.

J. Landrier, E. Karkeni, J. Marcotorchino, L. Bonnet, and F. Tourniaire, Vitamin D modulates adipose tissue biology: Possible consequences for obesity?, Proc. Nutr. Soc, vol.75, pp.38-46, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01478728

J. Landrier, J. Marcotorchino, and F. Tourniaire, Lipophilic micronutrients and adipose tissue biology, Nutrients, vol.4, pp.1622-1649, 2012.

S. Vienberg, J. Geiger, S. Madsen, and L. T. Dalgaard, MicroRNAs in metabolism, Acta. Physiol. (Oxf, vol.219, pp.346-361, 2017.

F. J. Ortega, J. M. Moreno-navarrete, G. Pardo, M. Sabater, M. Hummel et al., MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation, PLoS ONE, vol.5, 2010.

R. Martinelli, C. Nardelli, V. Pilone, T. Buonomo, R. Liguori et al., miR-519d overexpression is associated with human obesity, Obesity, vol.18, pp.2170-2176, 2010.

P. Arner and A. Kulyté, MicroRNA regulatory networks in human adipose tissue and obesity, Nat. Rev. Endocrinol, vol.11, pp.276-288, 2015.

H. M. Heneghan, N. Miller, and M. J. Kerin, Role of microRNAs in obesity and the metabolic syndrome, Obes.'Rev, vol.11, pp.354-361, 2010.

G. Maurizi, L. Babini, and L. Della-guardia, Potential role of microRNAs in the regulation of adipocytes liposecretion and adipose tissue physiology, J. Cell. Physiol, 2018.

M. Vohl, R. Sladek, J. Robitaille, S. Gurd, P. Marceau et al., A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men, Obes. Res, vol.12, pp.1217-1222, 2004.

N. Klöting, S. Berthold, P. Kovacs, M. R. Schön, M. Fasshauer et al., MicroRNA expression in human omental and subcutaneous adipose tissue, PLoS ONE, vol.4, p.4699, 2009.

H. M. Heneghan, N. Miller, O. J. Mcanena, T. O'brien, and M. J. Kerin, Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers, J. Clin. Endocrinol. Metab, vol.96, 2011.

P. Keller, V. Gburcik, N. Petrovic, I. J. Gallagher, J. Nedergaard et al., Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity, BMC Endocr. Disord, vol.11, issue.7, 2011.

M. M. Kristensen, P. K. Davidsen, A. Vigelsø, C. N. Hansen, L. J. Jensen et al., miRNAs in human subcutaneous adipose tissue: Effects of weight loss induced by hypocaloric diet and exercise, Obesity, vol.25, pp.572-580, 2017.

A. Meerson, M. Traurig, V. Ossowski, J. M. Fleming, M. Mullins et al., Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-?, Diabetologia, vol.56, 1971.

S. Li, X. Chen, H. Zhang, X. Liang, Y. Xiang et al., Differential expression of microRNAs in mouse liver under aberrant energy metabolic status, J. Lipid Res, vol.50, pp.1756-1765, 2009.

G. Iacomino and A. Siani, Role of microRNAs in obesity and obesity-related diseases, Genes Nutr, vol.12, 2017.

D. V. Chartoumpekis, A. Zaravinos, P. G. Ziros, R. P. Iskrenova, A. I. Psyrogiannis et al., Differential expression of microRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice, PLoS ONE, vol.7, 2012.

T. Seeger, A. Fischer, M. Muhly-reinholz, A. M. Zeiher, and S. Dimmeler, Long-term inhibition of miR-21 leads to reduction of obesity in db/db mice, Obesity, vol.22, pp.2352-2360, 2014.

P. Manning, P. E. Munasinghe, J. Bellae-papannarao, A. R. Gray, W. Sutherland et al., Acute Weight Loss Restores Dysregulated Circulating MicroRNAs in Individuals Who Are Obese, J. Clin. Endocrinol. Metab, vol.104, pp.1239-1248, 2019.

S. L. Atkin, V. Ramachandran, N. A. Yousri, M. Benurwar, S. C. Simper et al., Changes in Blood microRNA Expression and Early Metabolic Responsiveness 21 Days Following Bariatric Surgery, Front. Endocrinol, vol.9, 2018.

A. Turchinovich, L. Weiz, A. Langheinz, and B. Burwinkel, Characterization of extracellular circulating microRNA, Nucleic Acids Res, pp.39-7223, 2011.

M. A. Cortez and G. A. Calin, MicroRNA identification in plasma and serum: A new tool to diagnose and monitor diseases, Expert Opin. Biol. Ther, vol.9, pp.703-711, 2009.

C. Guay and R. Regazzi, Exosomes as new players in metabolic organ cross-talk, Diabetes Obes. Metab, vol.19, pp.137-146, 2017.

Z. Deng, A. Poliakov, R. W. Hardy, R. Clements, C. Liu et al., Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance, Diabetes, vol.58, pp.2498-2505, 2009.

T. Thomou, M. A. Mori, J. M. Dreyfuss, M. Konishi, M. Sakaguchi et al., Adipose-derived circulating miRNAs regulate gene expression in other tissues, Nature, vol.542, pp.450-455, 2017.

B. M. Spiegelman and J. S. Flier, Adipogenesis and Obesity: Rounding Out the Big Picture, Cell, vol.87, pp.377-389, 1996.

N. L. Price and C. Fernández-hernando, miRNA regulation of white and brown adipose tissue differentiation and function, Biochim. Biophys. Acta, vol.1861, pp.2104-2110, 2016.

N. L. Price, B. Holtrup, S. L. Kwei, M. Wabitsch, M. Rodeheffer et al., SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation, Mol. Cell. Biol, vol.36, pp.1180-1193, 2016.

P. Xu, S. Y. Vernooy, M. Guo, and B. A. Hay, The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism, Curr. Biol, vol.13, pp.790-795, 2003.

A. A. Teleman, S. Maitra, and S. M. Cohen, Drosophila lacking microRNA miR-278 are defective in energy homeostasis, Genes Dev, vol.20, pp.417-422, 2006.

C. Esau, X. Kang, E. Peralta, E. Hanson, E. G. Marcusson et al., MicroRNA-143 regulates adipocyte differentiation, J. Biol. Chem, vol.279, pp.52361-52365, 2004.

R. Takanabe, K. Ono, Y. Abe, T. Takaya, T. Horie et al., Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet, Biochem. Biophys. Res. Commun, vol.376, pp.728-732, 2008.

E. K. Lee, M. J. Lee, K. Abdelmohsen, W. Kim, M. M. Kim et al., suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression, Mol. Cell. Biol, vol.31, pp.626-638, 2011.

Q. Wang, Y. C. Li, J. Wang, J. Kong, Y. Qi et al., cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130, Proc. Natl. Acad. Sci, vol.105, pp.2889-2894, 2008.

H. Ling, G. Wen, S. Feng, Q. Tuo, H. Ou et al., MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling, Clin. Exp. Pharmacol. Physiol, vol.38, pp.239-246, 2011.

G. Flehmig, M. Scholz, N. Klöting, M. Fasshauer, A. Tönjes et al., Identification of adipokine clusters related to parameters of fat mass, insulin sensitivity and inflammation, PLoS ONE, vol.9, 2014.

G. Maurizi, L. Della-guardia, A. Maurizi, and A. Poloni, Adipocytes properties and crosstalk with immune system in obesity-related inflammation, J. Cell. Physiol, vol.233, pp.88-97, 2018.

L. Xu, C. Shi, G. Xu, L. Chen, L. Zhu et al., IL-6, and leptin increase the expression of miR-378, an adipogenesis-related microRNA in human adipocytes, Cell Biochem. Biophys, vol.70, pp.771-776, 2014.

H. Du, Z. Fu, G. He, Y. Wang, G. Xia et al., MicroRNA-218 targets adiponectin receptor 2 to regulate adiponectin signaling, Mol. Med. Rep, vol.11, pp.4701-4705, 2015.

A. Derghal, M. Djelloul, C. Airault, C. Pierre, M. Dallaporta et al., Leptin is required for hypothalamic regulation of miRNAs targeting POMC 3 UTR. Front, Cell. Neurosci, vol.9, p.172, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212345

C. Benoit, H. Ould-hamouda, D. Crepin, A. Gertler, L. Amar et al., Early leptin blockade predisposes fat-fed rats to overweight and modifies hypothalamic microRNAs, J. Endocrinol, vol.218, pp.35-47, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00913357

D. Crépin, Y. Benomar, L. Riffault, H. Amine, A. Gertler et al., The over-expression of miR-200a in the hypothalamus of ob/ob mice is linked to leptin and insulin signaling impairment, Mol. Cell. Endocrinol, vol.384, pp.1-11, 2014.

I. A. Vinnikov, K. Hajdukiewicz, J. Reymann, J. Beneke, R. Czajkowski et al., Hypothalamic miR-103 protects from hyperphagic obesity in mice, J. Neurosci, vol.34, pp.10659-10674, 2014.

S. Croizier, S. Park, J. Maillard, and S. G. Bouret, Central Dicer-miR-103/107 controls developmental switch of POMC progenitors into NPY neurons and impacts glucose homeostasis, vol.7, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02375382

A. Derghal, M. Djelloul, M. Azzarelli, S. Degonon, F. Tourniaire et al., MicroRNAs are involved in the hypothalamic leptin sensitivity, Epigenetics, vol.13, pp.1127-1140, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02010517

Y. Tseng, A. M. Cypess, and C. R. Kahn, Cellular bioenergetics as a target for obesity therapy, Nat. Rev. Drug Discov, vol.9, pp.465-482, 2010.

J. Marcotorchino, F. Tourniaire, J. Landrier, D. Vitamin, and . Horm, Mol. Biol. Clin. Investig, vol.15, pp.123-128, 2013.

Q. Ge, S. Brichard, X. Yi, and Q. Li, microRNAs as a New Mechanism Regulating Adipose Tissue Inflammation in Obesity and as a Novel Therapeutic Strategy in the Metabolic Syndrome, J. Immunol. Res, 2014.

M. Hulsmans, D. De-keyzer, and P. Holvoet, MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis, FASEB J, vol.25, pp.2515-2527, 2011.

J. C. Strum, J. H. Johnson, J. Ward, H. Xie, J. Feild et al., MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1, Mol. Endocrinol, vol.23, pp.1876-1884, 2009.

E. Arner, N. Mejhert, A. Kulyté, P. J. Balwierz, M. Pachkov et al., Adipose tissue microRNAs as regulators of CCL2 production in human obesity, Diabetes, vol.61, 1986.

W. Chou, Y. Wang, Y. Liao, S. Chuang, S. Wang et al., Decreased microRNA-221 is associated with high levels of TNF-? in human adipose tissue-derived mesenchymal stem cells from obese woman, Cell. Physiol. Biochem, vol.32, pp.127-137, 2013.

S. Lorente-cebrián, N. Mejhert, A. Kulyté, J. Laurencikiene, G. Åström et al., MicroRNAs regulate human adipocyte lipolysis: Effects of miR-145 are linked to TNF-?, PLoS ONE, vol.9, 2014.

E. Karkeni, J. Astier, F. Tourniaire, M. El-abed, B. Romier et al., Obesity-associated Inflammation Induces microRNA-155 Expression in Adipocytes and Adipose Tissue: Outcome on Adipocyte Function, J. Clin. Endocrinol. Metab, vol.101, pp.1615-1626, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01478345

H. Xie, B. Lim, and H. F. Lodish, MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity, Diabetes, vol.58, pp.1050-1057, 2009.

L. Zhu, L. Chen, C. Shi, G. Xu, L. Xu et al., MiR-335, an adipogenesis-related microRNA, is involved in adipose tissue inflammation, Cell Biochem. Biophys, vol.68, pp.283-290, 2014.

C. Kim, H. Lee, Y. M. Cho, O. Kwon, W. Kim et al., TNF?-induced miR-130 resulted in adipocyte dysfunction during obesity-related inflammation, FEBS Lett, vol.23, pp.3853-3858, 2013.

C. Shi, L. Zhu, X. Chen, N. Gu, L. Chen et al., IL-6 and TNF-? induced obesity-related inflammatory response through transcriptional regulation of miR-146b, J. Interferon Cytokine Res, vol.34, pp.342-348, 2014.

E. Karkeni, L. Bonnet, J. Marcotorchino, F. Tourniaire, J. Astier et al., Vitamin D limits inflammation-linked microRNA expression in adipocytes in vitro and in vivo: A new mechanism for the regulation of inflammation by vitamin D, Epigenetics, vol.13, pp.156-162, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01595263

X. Tang, G. Tang, and S. Ozcan, Role of microRNAs in diabetes, Biochim. Biophys. Acta, vol.1779, pp.697-701, 2008.

T. Melkman-zehavi, R. Oren, S. Kredo-russo, T. Shapira, A. D. Mandelbaum et al., miRNAs control insulin content in pancreatic ?-cells via downregulation of transcriptional repressors, EMBO J, vol.30, pp.835-845, 2011.

A. D. Mandelbaum, T. Melkman-zehavi, R. Oren, S. Kredo-russo, T. Nir et al., Dysregulation of Dicer1 in beta cells impairs islet architecture and glucose metabolism, Exp. Diabetes Res, vol.470302, 2012.

M. Kalis, C. Bolmeson, J. L. Esguerra, S. Gupta, A. Edlund et al., Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus, PLoS ONE, vol.6, 2011.

S. G. Tattikota, M. D. Sury, T. Rathjen, H. Wessels, A. K. Pandey et al., Argonaute2 Regulates the Pancreatic ?-Cell Secretome, Mol. Cell. Proteomics, vol.12, pp.1214-1225, 2013.

M. N. Poy, L. Eliasson, J. Krutzfeldt, S. Kuwajima, X. Ma et al., A pancreatic islet-specific microRNA regulates insulin secretion, Nature, vol.432, pp.226-230, 2004.

M. N. Poy, J. Hausser, M. Trajkovski, M. Braun, S. Collins et al., miR-375 maintains normal pancreatic alpha-and beta-cell mass, Proc. Natl. Acad. Sci, vol.106, pp.5813-5818, 2009.

A. El-ouaamari, N. Baroukh, G. A. Martens, P. Lebrun, D. Pipeleers et al., targets 3 -phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells, Diabetes, vol.57, pp.2708-2717, 2008.

V. Plaisance, A. Abderrahmani, V. Perret-menoud, P. Jacquemin, F. Lemaigre et al., MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells, J. Biol. Chem, vol.281, pp.26932-26942, 2006.

A. Krek, D. Grün, M. N. Poy, R. Wolf, L. Rosenberg et al., Combinatorial microRNA target predictions, Nat. Genet, vol.37, pp.495-500, 2005.

X. Tang, L. Muniappan, G. Tang, and S. Ozcan, Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription, RNA, vol.15, pp.287-293, 2009.

Y. Zhou, P. Gu, W. Shi, J. Li, Q. Hao et al., MicroRNA-29a induces insulin resistance by targeting PPAR? in skeletal muscle cells, Int. J. Mol. Med, vol.37, pp.931-938, 2016.

J. V. Esteves, F. J. Enguita, and U. F. Machado, MicroRNAs-Mediated Regulation of Skeletal Muscle GLUT4 Expression and Translocation in Insulin Resistance, J. Diabetes Res, 2017.

A. K. Pandey, G. Verma, S. Vig, S. Srivastava, A. K. Srivastava et al., miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells, Mol. Cell. Endocrinol, vol.332, pp.125-133, 2011.

W. Yang, H. Jeong, S. Park, and W. Lee, Induction of miR-29a by saturated fatty acids impairs insulin signaling and glucose uptake through translational repression of IRS-1 in myocytes, FEBS Lett, vol.588, pp.2170-2176, 2014.

L. Goedeke, F. M. Vales-lara, M. Fenstermaker, D. Cirera-salinas, A. Chamorro-jorganes et al., A regulatory role for microRNA 33* in controlling lipid metabolism gene expression, Mol. Cell. Biol, vol.33, pp.2339-2352, 2013.

X. Fu, B. Dong, Y. Tian, P. Lefebvre, Z. Meng et al., MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids, J. Clin. Invest, vol.125, pp.2497-2509, 2015.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI