, The World Health Organization (WHO), 2012.

E. Arner, P. O. Westermark, K. L. Spalding, T. Britton, M. Ryden et al., Adipocyte turnover: Relevance to human adipose tissue morphology, Diabetes, vol.59, pp.105-109, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00542528

S. R. Farmer, Transcriptional control of adipocyte formation, Cell Metab, vol.4, pp.263-273, 2006.

J. Friedman, 20 years of leptin: Leptin at 20: An overview, J. Endocrinol, vol.223, pp.1-8, 2014.

R. Ruhl and J. F. Landrier, Dietary regulation of adiponectin by direct and indirect lipid activators of nuclear hormone receptors, Mol. Nutr. Food Res, vol.60, pp.175-184, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01478689

M. F. Gregor and G. S. Hotamisligil, Inflammatory mechanisms in obesity, Annu. Rev. Immunol, vol.29, pp.415-445, 2011.

F. Tourniaire, B. Romier-crouzet, J. H. Lee, J. Marcotorchino, E. Gouranton et al., Chemokine Expression in Inflamed Adipose Tissue Is Mainly Mediated by NF-kappaB, PLoS ONE, vol.8, 2013.

E. Karkeni, J. Astier, F. Tourniaire, M. El-abed, B. Romier et al., Obesity-associated Inflammation Induces microRNA-155 Expression in Adipocytes and Adipose Tissue: Outcome on Adipocyte Function, J. Clin. Endocrinol. Metab, vol.101, pp.1615-1626, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01478345

E. Karkeni, L. Bonnet, J. Marcotorchino, F. Tourniaire, J. Astier et al., Vitamin D limits inflammation-linked microRNA expression in adipocytes in vitro and in vivo: A new mechanism for the regulation of inflammation by vitamin D, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595263

J. M. Olefsky and C. K. Glass, Macrophages, inflammation, and insulin resistance, Annu. Rev. Physiol, vol.72, pp.219-246, 2010.

S. P. Weisberg, D. Mccann, M. Desai, M. Rosenbaum, R. L. Leibel et al., Obesity is associated with macrophage accumulation in adipose tissue, J. Clin. Investig, vol.112, pp.1796-1808, 2003.

V. Bourlier and A. Bouloumie, Role of macrophage tissue infiltration in obesity and insulin resistance, Diabetes Metab, vol.35, pp.251-260, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00410101

M. A. Cornier, D. Dabelea, T. L. Hernandez, R. C. Lindstrom, A. J. Steig et al., The metabolic syndrome, Endocr. Rev, vol.29, pp.777-822, 2008.

O. Guillemot-legris and G. G. Muccioli, Obesity-Induced Neuroinflammation: Beyond the Hypothalamus, Trends Neurosci, vol.40, pp.237-253, 2017.

A. Derghal, M. Djelloul, J. Trouslard, and L. Mounien, The Role of MicroRNA in the Modulation of the Melanocortinergic System, Front. Neurosci, vol.11, p.181, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01762644

G. J. Morton, D. E. Cummings, D. G. Baskin, G. S. Barsh, and M. W. Schwartz, Central nervous system control of food intake and body weight, Nature, vol.443, pp.289-295, 2006.

H. R. Berthoud, Multiple neural systems controlling food intake and body weight, Neurosci. Biobehav. Rev, vol.26, pp.393-428, 2002.

M. Schneeberger, R. Gomis, and M. Claret, Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance, J. Endocrinol, vol.220, pp.25-46, 2014.

L. Mounien, P. Bizet, I. Boutelet, H. Vaudry, and S. Jegou, Expression of melanocortin MC3 and MC4 receptor mRNAs by neuropeptide Y neurons in the rat arcuate nucleus, Neuroendocrinology, vol.82, pp.164-170, 2005.

V. Lintig and J. , Colors with functions: Elucidating the biochemical and molecular basis of carotenoid metabolism, Annu. Rev. Nutr, vol.30, pp.35-56, 2010.

I. Paetau, F. Khachik, E. D. Brown, G. R. Beecher, T. R. Kramer et al., Chronic ingestion of lycopene-rich tomato juice or lycopene supplements significantly increases plasma concentrations of lycopene and related tomato carotenoids in humans, Am. J. Clin. Nutr, vol.68, pp.1187-1195, 1998.

J. E. Kimmons, H. M. Blanck, B. C. Tohill, J. Zhang, and L. K. Khan, Associations between body mass index and the prevalence of low micronutrient levels among US adults, vol.8, p.59, 2006.

O. P. Garcia, K. Z. Long, and J. L. Rosado, Impact of micronutrient deficiencies on obesity, Nutr. Rev, vol.67, pp.559-572, 2009.

L. F. Andersen, D. R. Jacobs, . Jr, M. D. Gross, P. J. Schreiner et al., Longitudinal associations between body mass index and serum carotenoids: The CARDIA study, Br. J. Nutr, vol.95, pp.358-365, 2006.

P. C. Calder, N. Ahluwalia, F. Brouns, T. Buetler, K. Clement et al., Dietary factors and low-grade inflammation in relation to overweight and obesity, Br. J. Nutr, vol.106, 2011.

M. A. Beydoun, M. R. Shroff, X. Chen, H. A. Beydoun, Y. Wang et al., Serum antioxidant status is associated with metabolic syndrome among U.S. adults in recent national surveys, J. Nutr, vol.141, pp.903-913, 2011.

M. A. Beydoun, X. Chen, K. Jha, H. A. Beydoun, A. B. Zonderman et al., Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis, Nutr. Rev, vol.77, pp.32-45, 2019.

M. L. Bonet, J. A. Canas, J. Ribot, and A. Palou, Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity, Arch. Biochem. Biophys, vol.572, pp.112-125, 2015.

J. A. Canas, A. Lochrie, A. G. Mcgowan, J. Hossain, C. Schettino et al., Effects of Mixed Carotenoids on Adipokines and Abdominal Adiposity in Children: A Pilot Study, J. Clin. Endocrinol. Metab, vol.102, 1983.

R. Kakutani, S. Hokari, A. Nishino, T. Ichihara, K. Sugimoto et al., Effect of Oral Paprika Xanthophyll Intake on Abdominal Fat in Healthy Overweight Humans: A Randomized, Double-blind, Placebo-controlled Study, J. Oleo Sci, vol.67, pp.1149-1162, 2018.

J. Coronel, I. Pinos, and J. Amengual, Obesity Research: Technical Considerations and Current Status of the Field. Nutrients, vol.11, 2019.

J. Amengual, E. Gouranton, Y. G. Van-helden, S. Hessel, J. Ribot et al., Beta-Carotene Reduces Body Adiposity of Mice via BCMO1, PLoS ONE, vol.6, 2011.

Y. G. Van-helden, R. W. Godschalk, J. Von-lintig, G. Lietz, J. F. Landrier et al., Gene expression response of mouse lung, liver and white adipose tissue to beta-carotene supplementation, knockout of Bcmo1 and sex, Mol. Nutr. Food Res, vol.55, pp.1466-1474, 2011.

G. P. Lobo, J. Amengual, H. N. Li, M. Golczak, M. L. Bonet et al., Beta,beta-carotene decreases peroxisome proliferator receptor gamma activity and reduces lipid storage capacity of adipocytes in a beta,beta-carotene oxygenase 1-dependent manner, J. Biol. Chem, vol.285, pp.27891-27899, 2010.

M. Ikeuchi, T. Koyama, J. Takahashi, and K. Yazawa, Effects of astaxanthin in obese mice fed a high-fat diet, Biosci. Biotechnol. Biochem, vol.71, pp.893-899, 2007.

E. Arunkumar, S. Bhuvaneswari, and C. V. Anuradha, An intervention study in obese mice with astaxanthin, a marine carotenoid-effects on insulin signaling and pro-inflammatory cytokines, Food Funct, vol.3, pp.120-126, 2012.

Y. Ni, M. Nagashimada, F. Zhuge, L. Zhan, N. Nagata et al., Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin, E. Sci. Rep, vol.5, p.17192, 2015.

B. Kim, C. Farruggia, C. S. Ku, T. X. Pham, Y. Yang et al., Astaxanthin inhibits inflammation and fibrosis in the liver and adipose tissue of mouse models of diet-induced obesity and nonalcoholic steatohepatitis, J. Nutr. Biochem, vol.43, pp.27-35, 2017.

K. Takayanagi, S. Morimoto, Y. Shirakura, K. Mukai, T. Sugiyama et al., Mechanism of visceral fat reduction in Tsumura Suzuki obese, diabetes (TSOD) mice orally administered beta-cryptoxanthin from Satsuma mandarin oranges (Citrus unshiu Marc), J. Agric. Food Chem, vol.59, pp.12342-12351, 2011.

Y. Ni, M. Nagashimada, L. Zhan, N. Nagata, M. Kobori et al., Prevention and reversal of lipotoxicity-induced hepatic insulin resistance and steatohepatitis in mice by an antioxidant carotenoid, beta-cryptoxanthin, Endocrinology, vol.156, pp.987-999, 2015.

H. Maeda, Nutraceutical effects of fucoxanthin for obesity and diabetes therapy: A review, J. Oleo Sci, vol.64, pp.125-132, 2015.

M. Hosokawa, T. Miyashita, S. Nishikawa, S. Emi, T. Tsukui et al., Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice, Arch. Biochem. Biophys, vol.504, pp.17-25, 2010.

A. Grasa-lopez, A. Miliar-garcia, L. Quevedo-corona, N. Paniagua-castro, G. Escalona-cardoso et al., Undaria pinnatifida and Fucoxanthin Ameliorate Lipogenesis and Markers of Both Inflammation and Cardiovascular Dysfunction in an Animal Model of Diet-Induced Obesity, Mar. Drugs, vol.14, 2016.

M. Liu, H. Liu, J. Xie, Q. Xu, C. Pan et al., Anti-obesity effects of zeaxanthin on 3T3-L1 preadipocyte and high fat induced obese mice, Food Funct, vol.8, pp.3327-3338, 2017.

D. P. Singh, P. Khare, J. Zhu, K. K. Kondepudi, J. Singh et al., A novel cobiotic-based preventive approach against high-fat diet-induced adiposity, nonalcoholic fatty liver and gut derangement in mice, Int. J. Obes, vol.40, pp.487-496, 2016.

S. Fenni, H. Hammou, J. Astier, L. Bonnet, E. Karkeni et al., Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response, and associated metabolic disorders, Mol. Nutr. Food Res, p.61, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01571909

C. C. Li, C. Liu, M. Fu, K. Q. Hu, K. Aizawa et al., Tomato Powder Inhibits Hepatic Steatosis and Inflammation Potentially Through Restoring SIRT1 Activity and Adiponectin Function Independent of Carotenoid Cleavage Enzymes in Mice, Mol. Nutr. Food Res, vol.62, 2018.

J. Wang, Q. Zou, Y. Suo, X. Tan, T. Yuan et al., Lycopene ameliorates systemic inflammation-induced synaptic dysfunction via improving insulin resistance and mitochondrial dysfunction in the liver-brain axis, Food Funct, vol.10, pp.2125-2137, 2019.

J. Wang, Y. Suo, J. Zhang, Q. Zou, X. Tan et al., Lycopene supplementation attenuates western diet-induced body weight gain through increasing the expressions of thermogenic/mitochondrial functional genes and improving insulin resistance in the adipose tissue of obese mice, J. Nutr. Biochem, vol.69, pp.63-72, 2019.

W. S. Blaner, Vitamin A signaling and homeostasis in obesity, diabetes, and metabolic disorders, Pharmacol. Ther, 2019.

A. W. Peirce, Carotene and vitamin A in human fat, Med. J. Aust, p.589, 1954.

S. M. Virtanen, P. Veer, F. Kok, A. F. Kardinaal, and A. Aro, Predictors of adipose tissue carotenoid and retinol levels in nine countries: The EURAMIC Study, Am. J. Epidemiol, vol.144, pp.968-979, 1996.

R. S. Parker, Carotenoids in human blood and tissues, J. Nutr, vol.119, pp.101-104, 1989.

H. Y. Chung, A. L. Ferreira, S. Epstein, S. A. Paiva, C. Castaneda-sceppa et al., Site-specific concentrations of carotenoids in adipose tissue: Relations with dietary and serum carotenoid concentrations in healthy adults, Am. J. Clin. Nutr, vol.90, pp.533-539, 2009.

J. F. Landrier, J. Marcotorchino, and F. Tourniaire, Lipophilic micronutrients and adipose tissue biology, Nutrients, vol.4, pp.1622-1649, 2012.

R. S. Parker, Carotenoid and tocopherol composition of human adipose tissue, Am. J. Clin. Nutr, vol.47, pp.33-36, 1988.

P. Wallstrom, E. Wirfalt, P. H. Lahmann, B. Gullberg, L. Janzon et al., Serum concentrations of beta-carotene and alpha-tocopherol are associated with diet, smoking, and general and central adiposity, Am. J. Clin. Nutr, vol.73, pp.777-785, 2001.

M. L. Kirby, S. Beatty, J. Stack, M. Harrison, I. Greene et al., Changes in macular pigment optical density and serum concentrations of lutein and zeaxanthin in response to weight loss, Br. J. Nutr, vol.105, pp.1036-1046, 2011.

M. Osth, A. Ost, P. Kjolhede, and P. Stralfors, The concentration of beta-carotene in human adipocytes, but not the whole-body adipocyte stores, is reduced in obesity, PLoS ONE, vol.9, 2014.

C. Sy, B. Gleize, O. Dangles, J. F. Landrier, C. C. Veyrat et al., Effects of physicochemical properties of carotenoids on their bioaccessibility, intestinal cell uptake, and blood and tissue concentrations, Mol. Nutr. Food Res, vol.56, pp.1385-1397, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01330165

M. Moussa, E. Gouranton, B. Gleize, C. E. Yazidi, I. Niot et al., CD36 is involved in lycopene and lutein uptake by adipocytes and adipose tissue cultures, Mol. Nutr. Food Res, vol.55, pp.578-584, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-01478649

E. Gouranton, C. E. Yazidi, N. Cardinault, M. J. Amiot, P. Borel et al., Purified low-density lipoprotein and bovine serum albumin efficiency to internalise lycopene into adipocytes, Food Chem. Toxicol, vol.46, pp.3832-3836, 2008.

A. F. Kardinaal, P. Veer, H. A. Brants, . Van-den, H. Berg et al., Relations between antioxidant vitamins in adipose tissue, plasma, and diet, Am. J. Epidemiol, vol.141, pp.440-450, 1995.

E. J. Johnson, P. M. Suter, N. Sahyoun, J. D. Ribaya-mercado, and R. M. Russell, Relation between beta-carotene intake and plasma and adipose tissue concentrations of carotenoids and retinoids, Am. J. Clin. Nutr, vol.62, pp.598-603, 1995.

E. J. Johnson, B. R. Hammond, K. J. Yeum, J. Qin, X. D. Wang et al., Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density, Am. J. Clin. Nutr, vol.71, pp.1555-1562, 2000.

Y. Walfisch, S. Walfisch, R. Agbaria, J. Levy, and Y. Sharoni, Lycopene in serum, skin and adipose tissues after tomato-oleoresin supplementation in patients undergoing haemorrhoidectomy or peri-anal fistulotomy, Br. J. Nutr, vol.90, pp.759-766, 2003.

A. El-sohemy, A. Baylin, E. Kabagambe, A. Ascherio, D. Spiegelman et al., Individual carotenoid concentrations in adipose tissue and plasma as biomarkers of dietary intake, Am. J. Clin. Nutr, vol.76, pp.172-179, 2002.

W. M. Broekmans, T. T. Berendschot, I. A. Klopping-ketelaars, A. J. De-vries, R. A. Goldbohm et al., Macular pigment density in relation to serum and adipose tissue concentrations of lutein and serum concentrations of zeaxanthin, Am. J. Clin. Nutr, vol.76, pp.595-603, 2002.

L. C. Su, M. Bui, A. Kardinaal, J. Gomez-aracena, J. Martin-moreno et al., Differences between plasma and adipose tissue biomarkers of carotenoids and tocopherols, Cancer Epidemiol. Prev. Biomark, vol.7, pp.1043-1048, 1998.

K. J. Yeum, S. L. Booth, R. Roubenoff, and R. M. Russell, Plasma carotenoid concentrations are inversely correlated with fat mass in older women, J. Nutr. Health Aging, vol.2, pp.79-83, 1998.

S. Hessel, A. Eichinger, A. Isken, J. Amengual, S. Hunzelmann et al., CMO1 deficiency abolishes vitamin A production from beta-carotene and alters lipid metabolism in mice, J. Biol. Chem, vol.282, pp.33553-33561, 2007.

F. Tourniaire, E. Gouranton, J. Von-lintig, J. Keijer, M. L. Bonet et al., beta-Carotene conversion products and their effects on adipose tissue, Genes Nutr, vol.4, pp.179-187, 2009.

O. Ziouzenkova, G. Orasanu, M. Sharlach, T. E. Akiyama, J. P. Berger et al., Retinaldehyde represses adipogenesis and diet-induced obesity, Nat. Med, vol.13, pp.695-702, 2007.

C. Tsutsumi, M. Okuno, L. Tannous, R. Piantedosi, M. Allan et al., Retinoids and retinoid-binding protein expression in rat adipocytes, J. Biol. Chem, vol.267, pp.1805-1810, 1992.

M. A. Kane, Analysis, occurrence, and function of 9-cis-retinoic acid, Biochim. Biophys. Acta, vol.1821, pp.10-20, 2012.

A. Sima, D. C. Manolescu, and P. Bhat, Retinoids and retinoid-metabolic gene expression in mouse adipose tissues, Biochem. Cell Biol, vol.89, pp.578-584, 2011.

S. M. O'byrne, N. Wongsiriroj, J. Libien, S. Vogel, I. J. Goldberg et al., Retinoid absorption and storage is impaired in mice lacking lecithin

, J. Biol. Chem, vol.280, pp.35647-35657, 2005.

J. F. Landrier, E. Kasiri, E. Karkeni, J. Mihaly, G. Beke et al., Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue, vol.31, pp.203-211, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595261

P. Germain, P. Chambon, G. Eichele, R. M. Evans, M. A. Lazar et al., International Union of Pharmacology. LXIII. Retinoid X receptors, Pharmacol. Rev, vol.58, pp.760-772, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00187925

P. Germain, P. Chambon, G. Eichele, R. M. Evans, M. A. Lazar et al., International Union of Pharmacology. LX. Retinoic acid receptors, Pharmacol. Rev, vol.58, pp.712-725, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00187925

R. Yasmeen, S. M. Jeyakumar, B. Reichert, F. Yang, and O. Ziouzenkova, The contribution of vitamin A to autocrine regulation of fat depots, Biochim. Biophys. Acta, vol.1821, pp.190-197, 2012.

D. C. Berry and N. Noy, All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor, Mol. Cell. Biol, vol.29, pp.3286-3296, 2009.

G. Aydemir, H. Carlsen, R. Blomhoff, and R. Ruhl, Lycopene induces retinoic acid receptor transcriptional activation in mice, Mol. Nutr. Food Res, vol.56, pp.702-712, 2012.

E. Gouranton, G. Aydemir, E. Reynaud, J. Marcotorchino, C. Malezet et al., Apo-10 -lycopenoic acid impacts adipose tissue biology via the retinoic acid receptors, Biochim. Biophys. Acta, vol.1811, pp.1105-1114, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01330314

A. V. Rao, M. R. Ray, L. G. Rao, and . Lycopene, Adv. Food Nutr. Res, vol.51, pp.99-164, 2006.

Y. Sharoni, K. Linnewiel-hermoni, M. Khanin, H. Salman, A. Veprik et al., Carotenoids and apocarotenoids in cellular signaling related to cancer: A review, Mol. Nutr. Food Res, vol.56, pp.259-269, 2012.

A. Ben-dor, M. Steiner, L. Gheber, M. Danilenko, N. Dubi et al., Carotenoids activate the antioxidant response element transcription system, Mol. Cancer Ther, vol.4, pp.177-186, 2005.

J. F. Landrier, Les Phytomicronutriments, 2012.

T. Kawada, Y. Kamei, A. Fujita, Y. Hida, N. Takahashi et al., Carotenoids and retinoids as suppressors on adipocyte differentiation via nuclear receptors, Biofactors, vol.13, pp.103-109, 2000.

O. Ziouzenkova, G. Orasanu, G. Sukhova, E. Lau, J. P. Berger et al., Asymmetric cleavage of beta-carotene yields a transcriptional repressor of retinoid X receptor and peroxisome proliferator-activated receptor responses, Mol. Endocrinol, vol.21, pp.77-88, 2007.

Y. Shirakura, K. Takayanagi, K. Mukai, H. Tanabe, and M. Inoue, ?-Cryptoxanthin suppresses the adipogenesis of 3T3-L1 cells via RAR activation, J. Nutr. Sci. Vitaminol, vol.57, pp.426-431, 2011.

M. Inoue, H. Tanabe, A. Matsumoto, M. Takagi, K. Umegaki et al., Astaxanthin functions differently as a selective peroxisome proliferator-activated receptor gamma modulator in adipocytes and macrophages, Biochem. Pharmacol, vol.84, pp.692-700, 2012.

H. Maeda, M. Hosokawa, T. Sashima, N. Takahashi, T. Kawada et al., Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells, Int. J. Mol. Med, vol.18, pp.147-152, 2006.

M. J. Seo, Y. J. Seo, C. H. Pan, O. H. Lee, K. J. Kim et al., Fucoxanthin Suppresses Lipid Accumulation and ROS Production During Differentiation in 3T3-L1 Adipocytes, Phytother. Res, vol.30, pp.1802-1808, 2016.

H. Kameji, K. Mochizuki, and N. Miyoshi, Goda, T. ?-Carotene accumulation in 3T3-L1 adipocytes inhibits the elevation of reactive oxygen species and the suppression of genes related to insulin sensitivity induced by tumor necrosis factor-alpha, Nutrition, vol.26, pp.1151-1156, 2010.

S. O. Cho, M. H. Kim, and H. Kim, ?-Carotene Inhibits Activation of NF-kappaB, Activator Protein-1, and STAT3 and Regulates Abnormal Expression of Some Adipokines in 3T3-L1 Adipocytes, J. Cancer Prev, vol.23, pp.37-43, 2018.

H. Maeda, S. Kanno, M. Kodate, M. Hosokawa, K. Miyashita et al., Metabolite of Fucoxanthin, Improves Obesity-Induced Inflammation in Adipocyte Cells, Mar. Drugs, vol.13, pp.4799-4813, 2015.

E. Gouranton, C. Thabuis, C. Riollet, C. Malezet-desmoulins, C. El-yazidi et al., Lycopene inhibits proinflammatory cytokine and chemokine expression in adipose tissue, J. Nutr. Biochem, vol.22, pp.642-648, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-01478678

J. Marcotorchino, B. Romier, E. Gouranton, C. Riollet, B. Gleize et al., Lycopene attenuates LPS-induced TNF-alpha secretion in macrophages and inflammatory markers in adipocytes exposed to macrophage-conditioned media, Mol. Nutr. Food Res, vol.56, pp.725-732, 2012.

S. Fenni, J. Astier, L. Bonnet, E. Karkeni, E. Gouranton et al., all-E)-and (5Z)-Lycopene Display Similar Biological Effects on Adipocytes, Mol. Nutr. Food Res, vol.63, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01998506

J. Antras, F. Lasnier, and J. Pairault, Adipsin gene expression in 3T3-F442A adipocytes is posttranscriptionally down-regulated by retinoic acid, J. Biol. Chem, vol.266, pp.1157-1161, 1991.

F. Felipe, M. L. Bonet, J. Ribot, and A. Palou, Modulation of resistin expression by retinoic acid and vitamin A status, Diabetes, vol.53, pp.882-889, 2004.

E. Karkeni, L. Bonnet, J. Astier, C. Couturier, J. Dalifard et al., All-trans-retinoic acid represses chemokine expression in adipocytes and adipose tissue by inhibiting NF-kappaB signaling, J. Nutr. Biochem, vol.42, pp.101-107, 2017.

M. Chondronikola, E. Volpi, E. Borsheim, C. Porter, P. Annamalai et al., Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans, Diabetes, vol.63, pp.4089-4099, 2014.

M. Liu, M. Zheng, D. Cai, J. Xie, Z. Jin et al., Zeaxanthin promotes mitochondrial biogenesis and adipocyte browning via AMPKalpha1 activation, Food Funct, vol.10, pp.2221-2233, 2019.

F. Tourniaire, H. Musinovic, E. Gouranton, J. Astier, J. Marcotorchino et al., All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes, J. Lipid Res, vol.56, pp.1100-1109, 2016.

C. J. Rebello, F. L. Greenway, W. D. Johnson, D. Ribnicky, A. Poulev et al., Fucoxanthin and Its Metabolite Fucoxanthinol Do Not Induce Browning in Human Adipocytes, J. Agric. Food Chem, vol.65, pp.10915-10924, 2017.

G. Aragones, A. Ardid-ruiz, M. Ibars, M. Suarez, and C. Blade, Modulation of leptin resistance by food compounds, Mol. Nutr. Food Res, vol.60, pp.1789-1803, 2016.

N. E. Craft, T. B. Haitema, K. M. Garnett, K. A. Fitch, and C. K. Dorey, Carotenoid, tocopherol, and retinol concentrations in elderly human brain, J. Nutr. Health Aging, vol.8, pp.156-162, 2004.

E. J. Johnson, R. Vishwanathan, M. A. Johnson, D. B. Hausman, A. Davey et al., Relationship between Serum and Brain Carotenoids, alpha-Tocopherol, and Retinol Concentrations and Cognitive Performance in the Oldest Old from the Georgia Centenarian Study, J. Aging Res, 2013.

K. Takayama, E. Nishiko, G. Matsumoto, and T. Inakuma, Study on the expression of c-Fos protein in the brain of rats after ingestion of food rich in lycopene, Neurosci. Lett, vol.536, pp.1-5, 2013.

A. Kuhad, R. Sethi, and K. Chopra, Lycopene attenuates diabetes-associated cognitive decline in rats, Life Sci, vol.83, pp.128-134, 2008.

D. Zhao, S. H. Kwon, Y. S. Chun, M. Y. Gu, and H. O. Yang, Anti-Neuroinflammatory Effects of Fucoxanthin via Inhibition of Akt/NF-kappaB and MAPKs/AP-1 Pathways and Activation of PKA/CREB Pathway in Lipopolysaccharide-Activated BV-2 Microglial Cells, Neurochem. Res, vol.42, pp.667-677, 2017.

X. Jiang, G. Wang, Q. Lin, Z. Tang, Q. Yan et al., Fucoxanthin prevents lipopolysaccharide-induced depressive-like behavior in mice via AMPK-NF-kappaB pathway, Metab. Brain Dis, vol.34, pp.431-442, 2019.

D. G. Hardie, AMP-activated protein kinase: Maintaining energy homeostasis at the cellular and whole-body levels, Annu. Rev. Nutr, vol.34, pp.31-55, 2014.