F. Khachik, C. J. Spangler, J. C. Smith, . Jr, L. M. Canfield et al., Identification, quantification, and relative concentrations of carotenoids and their metabolites in human milk and serum, Anal. Chem, vol.69, pp.1873-1881, 1997.

H. Tapiero, D. M. Townsend, and K. D. Tew, The role of carotenoids in the prevention of human pathologies, Biomed. Pharmacother, vol.58, pp.100-110, 2004.

N. J. Engelmann, S. K. Clinton, J. W. Erdman, and . Jr, Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene, Adv. Nutr, vol.2, pp.51-61, 2011.

A. R. Moise, S. Al-babili, and E. T. Wurtzel, Mechanistic aspects of carotenoid biosynthesis, Chem. Rev, vol.114, pp.164-193, 2014.

D. E. Breithaupt, A. Bamedi, and U. Wirt, Carotenol fatty acid esters: Easy substrates for digestive enzymes? Comp, Biochem. Physiol. B Biochem. Mol. Biol, vol.132, pp.721-728, 2002.

P. E. Bowen, S. M. Herbst-espinosa, E. A. Hussain, and M. Stacewicz-sapuntzakis, Esterification does not impair lutein bioavailability in humans, J. Nutr, vol.132, pp.3668-3673, 2002.

J. Shi and M. Le-maguer, Lycopene in tomatoes: Chemical and physical properties affected by food processing, Crit. Rev. Biotechnol, vol.20, pp.293-334, 2000.

E. B. Rodriguez and D. B. Rodriguez-amaya, Formation of apocarotenals and epoxycarotenoids from beta-carotene by chemical reactions and by autoxidation in model systems and processed foods, Food Chem, vol.101, pp.563-572, 2007.

R. E. Kopec, K. M. Riedl, E. H. Harrison, R. W. Curley, . Jr et al., Identification and quantification of apo-lycopenals in fruits, vegetables, and human plasma, J. Agric. Food Chem, vol.58, pp.3290-3296, 2010.

E. Reboul, M. Richelle, E. Perrot, C. Desmoulins-malezet, V. Pirisi et al., Bioaccessibility of carotenoids and vitamin e from their main dietary sources, J. Agric. Food Chem, vol.54, pp.8749-8755, 2006.

P. Mapelli-brahm, J. Corte-real, A. J. Melendez-martinez, and T. Bohn, Bioaccessibility of phytoene and phytofluene is superior to other carotenoids from selected fruit and vegetable juices, vol.229, pp.304-311, 2017.

N. I. Krinsky and K. J. Yeum, Carotenoid-radical interactions, Biochem. Biophys. Res. Commun, vol.305, pp.754-760, 2003.

A. Kaulmann and T. Bohn, Carotenoids, inflammation, and oxidative stress-Implications of cellular signaling pathways and relation to chronic disease prevention, Nutr. Res, vol.34, pp.907-929, 2014.

N. K. Scripsema, D. N. Hu, and R. B. Rosen, Lutein, zeaxanthin, and meso-zeaxanthin in the clinical management of eye disease, J. Ophthalmol, vol.865179, 2015.

P. Borel, P. Grolier, M. Armand, A. Partier, H. Lafont et al., Azais-Braesco, V. Carotenoids in biological emulsions: Solubility, surface-to-core distribution, and release from lipid droplets, J. Lipid Res, vol.37, pp.250-261, 1996.

V. Tyssandier, E. Reboul, J. F. Dumas, C. Bouteloup-demange, M. Armand et al., Processing of vegetable-borne carotenoids in the human stomach and duodenum, Am. J. Physiol. Gastrointest. Liver Physiol, vol.284, pp.913-923, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02420271

R. Re, P. D. Fraser, M. Long, P. M. Bramley, and C. Rice-evans, Isomerization of lycopene in the gastric milieu, Biochem. Biophys. Res. Commun, vol.281, pp.576-581, 2001.

R. E. Kopec, B. Gleize, P. Borel, C. Desmarchelier, and C. Caris-veyrat, Are lutein, lycopene, and beta-carotene lost through the digestive process? Food Funct, vol.8, pp.1494-1503, 2017.

C. Dhuique-mayer, P. Borel, E. Reboul, B. Caporiccio, P. Besancon et al., Beta-cryptoxanthin from citrus juices: Assessment of bioaccessibility using an in vitro digestion/caco-2 cell culture model, Br. J. Nutr, vol.97, pp.883-890, 2007.

E. Reboul, Absorption of vitamin a and carotenoids by the enterocyte: Focus on transport proteins, Nutrients, vol.5, pp.3563-3581, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01478606

A. Mensi, P. Borel, A. Goncalves, M. Nowicki, B. Gleize et al., Beta-lactoglobulin as a vector for beta-carotene food fortification, J. Agric. Food Chem, vol.62, pp.5916-5924, 2014.

C. T. Phan and P. Tso, Intestinal lipid absorption and transport, Front. Biosci, vol.6, pp.299-319, 2001.

M. Van-lieshout, C. E. West, and R. B. Van-breemen, Isotopic tracer techniques for studying the bioavailability and bioefficacy of dietary carotenoids, particularly beta-carotene, in humans: A review, Am. J. Clin. Nutr, vol.77, pp.12-28, 2003.

C. A. Van-loo-bouwman, T. H. Naber, R. B. Van-breemen, D. Zhu, H. Dicke et al., Vitamin a equivalency and apparent absorption of beta-carotene in ileostomy subjects using a dual-isotope dilution technique, Br. J. Nutr, vol.103, pp.1836-1843, 2010.

P. Borel, P. Grolier, N. Mekki, Y. Boirie, Y. Rochette et al., Azais-Braesco, V. Low and high responders to pharmacological doses of beta-carotene: Proportion in the population, mechanisms involved and consequences on beta-carotene metabolism, J. Lipid Res, vol.39, pp.2250-2260, 1998.

A. During, M. M. Hussain, D. W. Morel, and E. H. Harrison, Carotenoid uptake and secretion by caco-2 cells: Beta-carotene isomer selectivity and carotenoid interactions, J. Lipid Res, vol.43, pp.1086-1095, 2002.

P. Mapelli-brahm, C. Desmarchelier, M. Margier, E. Reboul, A. J. Melendez-martinez et al., Phytoene and phytofluene isolated from a tomato extract are readily incorporated in mixed micelles and absorbed by caco-2 cells, as compared to lycopene, and sr-bi is involved in their cellular uptake, Mol. Nutr. Food Res, vol.62, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01986021

C. Kiefer, E. Sumser, M. F. Wernet, and J. Von-lintig, A class b scavenger receptor mediates the cellular uptake of carotenoids in drosophila, Proc. Natl. Acad. Sci, vol.99, pp.10581-10586, 2002.

E. Reboul, Z. Soayfane, A. Goncalves, M. Cantiello, R. Bott et al., Respective contributions of intestinal niemann-pick c1-like 1 and scavenger receptor class b type i to cholesterol and tocopherol uptake: In vivo v. In vitro studies, Br. J. Nutr, vol.107, pp.1296-1304, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-01478671

H. Hauser, J. H. Dyer, A. Nandy, M. A. Vega, M. Werder et al., Identification of a receptor mediating absorption of dietary cholesterol in the intestine, Biochemistry, vol.37, pp.17843-17850, 1998.

F. Bietrix, D. Yan, M. Nauze, C. Rolland, J. Bertrand-michel et al., Accelerated lipid absorption in mice overexpressing intestinal sr-bi, J. Biol. Chem, vol.281, pp.7214-7219, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00140326

D. V. Nguyen, V. A. Drover, M. Knopfel, P. Dhanasekaran, H. Hauser et al., Influence of class b scavenger receptors on cholesterol flux across the brush border membrane and intestinal absorption, J. Lipid Res, vol.50, pp.2235-2244, 2009.

S. Saddar, V. Carriere, W. R. Lee, K. Tanigaki, I. S. Yuhanna et al., Scavenger receptor class b type i is a plasma membrane cholesterol sensor, Circ. Res, vol.112, pp.140-151, 2013.

M. Lino, S. Farr, C. Baker, M. Fuller, B. Trigatti et al., Intestinal scavenger receptor class b type i as a novel regulator of chylomicron production in healthy and diet-induced obese states, Am. J. Physiol. Gastrointest. Liver Physiol, vol.309, pp.350-359, 2015.

M. Moussa, J. F. Landrier, E. Reboul, O. Ghiringhelli, C. Comera et al., Lycopene absorption in human intestinal cells and in mice involves scavenger receptor class b type i but not niemann-pick c1-like 1, J. Nutr, vol.138, pp.1432-1436, 2008.

P. Borel, G. Lietz, A. Goncalves, F. Szabo-de-edelenyi, S. Lecompte et al., Cd36 and sr-bi are involved in cellular uptake of provitamin a carotenoids by caco-2 and hek cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans, J. Nutr, vol.143, pp.448-456, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01478566

E. Reboul, A. Goncalves, C. Comera, R. Bott, M. Nowicki et al., Vitamin d intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters, Mol. Nutr. Food Res, vol.55, pp.691-702, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00597005

E. Reboul, A. Klein, F. Bietrix, B. Gleize, C. Malezet-desmoulins et al., Scavenger receptor class b type i (sr-bi) is involved in vitamin e transport across the enterocyte, J. Biol. Chem, vol.281, pp.4739-4745, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00140329

A. Goncalves, M. Margier, S. Roi, X. Collet, I. Niot et al., Intestinal scavenger receptors are involved in vitamin k1 absorption, J. Biol. Chem, vol.289, pp.30743-30752, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01478590

V. Terpstra, E. S. Van-amersfoort, A. G. Van-velzen, J. Kuiper, and T. J. Van-berkel, Hepatic and extrahepatic scavenger receptors: Function in relation to disease, Arterioscler. Thromb. Vasc. Biol, vol.20, pp.1860-1872, 2000.

V. A. Drover, D. V. Nguyen, C. C. Bastie, Y. F. Darlington, N. A. Abumrad et al., Cd36 mediates both cellular uptake of very long chain fatty acids and their intestinal absorption in mice, J. Biol. Chem, vol.283, pp.13108-13115, 2008.

A. Rigotti, S. L. Acton, and M. Krieger, The class b scavenger receptors sr-bi and cd36 are receptors for anionic phospholipids, J. Biol. Chem, vol.270, pp.16221-16224, 1995.

G. Endemann, L. W. Stanton, K. S. Madden, C. M. Bryant, R. T. White et al., Cd36 is a receptor for oxidized low density lipoprotein, J. Biol. Chem, vol.268, pp.11811-11816, 1993.

M. Buttet, V. Traynard, T. T. Tran, P. Besnard, and H. Poirier, Niot, I. From fatty-acid sensing to chylomicron synthesis: Role of intestinal lipid-binding proteins, Biochimie, vol.96, pp.37-47, 2014.

A. Goncalves, S. Roi, M. Nowicki, I. Niot, and E. Reboul, Cluster-determinant 36 (cd36) impacts on vitamin e postprandial response, Mol. Nutr. Food Res, vol.58, pp.2297-2306, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01478595

M. Moussa, E. Gouranton, B. Gleize, C. El-yazidi, I. Niot et al., Cd36 is involved in lycopene and lutein uptake by adipocytes and adipose tissue cultures, Mol. Nutr. Food Res, vol.55, pp.578-584, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-01478649

A. Van-bennekum, M. Werder, S. T. Thuahnai, C. H. Han, P. Duong et al., Class b scavenger receptor-mediated intestinal absorption of dietary beta-carotene and cholesterol, Biochemistry, vol.44, pp.4517-4525, 2005.

H. R. Davis, . Jr, and S. W. Altmann, Niemann-pick c1 like 1 (npc1l1) an intestinal sterol transporter, Biochim. Biophys. Acta, vol.1791, pp.679-683, 2009.

A. During, H. D. Dawson, and E. H. Harrison, Carotenoid transport is decreased and expression of the lipid transporters sr-bi, npc1l1, and abca1 is downregulated in caco-2 cells treated with ezetimibe, J. Nutr, vol.135, pp.2305-2312, 2005.

Y. Sato, R. Suzuki, M. Kobayashi, S. Itagaki, T. Hirano et al., Involvement of cholesterol membrane transporter niemann-pick c1-like 1 in the intestinal absorption of lutein, J. Pharm. Pharm. Sci, vol.15, pp.256-264, 2012.

M. Margier, X. Collet, C. Le-may, C. Desmarchelier, F. Andre et al., Abcb1 (p-glycoprotein) regulates vitamin d absorption and contributes to its transintestinal efflux, FASEB J, vol.33, pp.2084-2094, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01986017

K. L. Herron, M. M. Mcgrane, D. Waters, I. E. Lofgren, R. M. Clark et al., The abcg5 polymorphism contributes to individual responses to dietary cholesterol and carotenoids in eggs, J. Nutr, vol.136, pp.1161-1165, 2006.

H. Tabunoki, H. Sugiyama, Y. Tanaka, H. Fujii, Y. Banno et al., Isolation, characterization, and cdna sequence of a carotenoid binding protein from the silk gland of bombyx mori larvae, J. Biol. Chem, vol.277, pp.32133-32140, 2002.

P. Bhosale, B. Li, M. Sharifzadeh, W. Gellermann, J. M. Frederick et al., Purification and partial characterization of a lutein-binding protein from human retina, Biochemistry, vol.48, pp.4798-4807, 2009.

P. Borel, M. Moussa, E. Reboul, B. Lyan, C. Defoort et al., Human fasting plasma concentrations of vitamin e and carotenoids, and their association with genetic variants in apo c-iii, cholesteryl ester transfer protein, hepatic lipase, intestinal fatty acid binding protein and microsomal triacylglycerol transfer protein, Br. J. Nutr, vol.101, pp.680-687, 2009.

J. J. Castenmiller and C. E. West, Bioavailability and bioconversion of carotenoids, Annu. Rev. Nutr, vol.18, pp.19-38, 1998.

C. Dela-sena, K. M. Riedl, S. Narayanasamy, R. W. Curley, . Jr et al., The human enzyme that converts dietary provitamin a carotenoids to vitamin a is a dioxygenase, J. Biol. Chem, vol.289, pp.13661-13666, 2014.

G. P. Lobo, J. Amengual, G. Palczewski, D. Babino, and J. Von-lintig, Mammalian carotenoid-oxygenases: Key players for carotenoid function and homeostasis, Biochim. Biophys. Acta, vol.1821, pp.78-87, 2012.

J. Amengual, M. A. Widjaja-adhi, S. Rodriguez-santiago, S. Hessel, M. Golczak et al., Two carotenoid oxygenases contribute to mammalian provitamin a metabolism, J. Biol. Chem, vol.288, pp.34081-34096, 2013.

S. M. O'byrne, N. Wongsiriroj, J. Libien, S. Vogel, I. J. Goldberg et al., Retinoid absorption and storage is impaired in mice lacking lecithin:Retinol acyltransferase (lrat), J. Biol. Chem, vol.280, pp.35647-35657, 2005.

N. Wongsiriroj, R. Piantedosi, K. Palczewski, I. J. Goldberg, T. P. Johnston et al., The molecular basis of retinoid absorption: A genetic dissection, J. Biol. Chem, vol.283, pp.13510-13519, 2008.

G. Palczewski, J. Amengual, C. L. Hoppel, and J. Von-lintig, Evidence for compartmentalization of mammalian carotenoid metabolism, FASEB J, vol.28, pp.4457-4469, 2014.

R. E. Kopec, C. Caris-veyrat, M. Nowicki, B. Gleize, M. Carail et al., Production of asymmetric oxidative metabolites of [13c]-beta-carotene during digestion in the gastrointestinal lumen of healthy men, Am. J. Clin. Nutr, vol.108, pp.803-813, 2018.

C. S. You, R. S. Parker, K. J. Goodman, J. E. Swanson, and T. N. Corso, Evidence of cis-trans isomerization of 9-cis-beta-carotene during absorption in humans, Am. J. Clin. Nutr, vol.64, pp.177-183, 1996.

M. Richelle, B. Sanchez, I. Tavazzi, P. Lambelet, K. Bortlik et al., Lycopene isomerisation takes place within enterocytes during absorption in human subjects, Br. J. Nutr, vol.103, pp.1800-1807, 2010.

E. Reboul, D. Trompier, M. Moussa, A. Klein, J. F. Landrier et al., Atp-binding cassette transporter a1 is significantly involved in the intestinal absorption of alpha-and gamma-tocopherol but not in that of retinyl palmitate in mice, Am. J. Clin. Nutr, vol.89, pp.177-184, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00402982

E. J. Niesor, E. Chaput, J. L. Mary, A. Staempfli, A. Topp et al., Effect of compounds affecting abca1 expression and cetp activity on the hdl pathway involved in intestinal absorption of lutein and zeaxanthin, Lipids, vol.49, pp.1233-1243, 2014.

P. Borel, C. Desmarchelier, M. Nowicki, and R. Bott, Lycopene bioavailability is associated with a combination of genetic variants. Free Radic, Biol. Med, vol.83, pp.238-244, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01478367

P. Borel, C. Desmarchelier, M. Nowicki, and R. Bott, A combination of single-nucleotide polymorphisms is associated with interindividual variability in dietary beta-carotene bioavailability in healthy men, J. Nutr, vol.145, pp.1740-1747, 2015.

P. Borel, C. Desmarchelier, M. Nowicki, R. Bott, S. Morange et al., Interindividual variability of lutein bioavailability in healthy men: Characterization, genetic variants involved, and relation with fasting plasma lutein concentration, Am. J. Clin. Nutr, vol.100, pp.168-175, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01478524

Y. Seino, T. Miki, H. Kiyonari, T. Abe, W. Fujimoto et al., Isx participates in the maintenance of vitamin a metabolism by regulation of beta-carotene 15,15 -monooxygenase (bcmo1) expression, J. Biol. Chem, vol.283, pp.4905-4911, 2008.

M. Y. Choi, A. I. Romer, M. Hu, M. Lepourcelet, A. Mechoor et al., A dynamic expression survey identifies transcription factors relevant in mouse digestive tract development, vol.133, pp.4119-4129, 2006.

G. P. Lobo, S. Hessel, A. Eichinger, N. Noy, A. R. Moise et al., Isx is a retinoic acid-sensitive gatekeeper that controls intestinal beta,beta-carotene absorption and vitamin a production, FASEB J, vol.24, pp.1656-1666, 2010.

A. Goncalves, B. Gleize, S. Roi, M. Nowicki, A. Dhaussy et al., Fatty acids affect micellar properties and modulate vitamin d uptake and basolateral efflux in caco-2 cells, J. Nutr. Biochem, vol.24, pp.1751-1757, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01478644

. De-vogel-van-den, H. M. Bosch, N. J. De-wit, G. J. Hooiveld, H. Vermeulen et al., A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine, Am. J. Physiol. Gastrointest. Liver Physiol, vol.294, pp.1171-1180, 2008.

M. Chen, Y. Yang, E. Braunstein, K. E. Georgeson, and C. M. Harmon, Gut expression and regulation of fat/cd36: Possible role in fatty acid transport in rat enterocytes, Am. J. Physiol. Endocrinol. Metab, vol.281, pp.916-923, 2001.

H. R. Davis, . Jr, L. J. Zhu, L. M. Hoos, G. Tetzloff et al., Niemann-pick c1 like 1 (npc1l1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis, J. Biol. Chem, vol.279, pp.33586-33592, 2004.

E. D. Jesch, J. M. Seo, T. P. Carr, and J. Y. Lee, Sitosterol reduces messenger rna and protein expression levels of niemann-pick c1-like 1 in fhs 74 int cells, Nutr. Res, vol.29, pp.859-866, 2009.

R. Brauner, C. Johannes, F. Ploessl, F. Bracher, and R. L. Lorenz, Phytosterols reduce cholesterol absorption by inhibition of 27-hydroxycholesterol generation, liver x receptor alpha activation, and expression of the basolateral sterol exporter atp-binding cassette a1 in caco-2 enterocytes, J. Nutr, vol.142, pp.981-989, 2012.

A. Alvaro, R. Rosales, L. Masana, and J. C. Vallve, Polyunsaturated fatty acids down-regulate in vitro expression of the key intestinal cholesterol absorption protein npc1l1: No effect of monounsaturated nor saturated fatty acids, J. Nutr. Biochem, vol.21, pp.518-525, 2010.

P. Malhotra, C. S. Boddy, V. Soni, S. Saksena, P. K. Dudeja et al., D-glucose modulates intestinal niemann-pick c1-like 1 (npc1l1) gene expression via transcriptional regulation, Am. J. Physiol. Gastrointest. Liver Physiol, vol.304, 2013.

T. Boztepe and S. Gulec, Investigation of the influence of high glucose on molecular and genetic responses: An in vitro study using a human intestine model, Genes Nutr, vol.13, 2018.

B. Kim, Y. Park, C. J. Wegner, B. W. Bolling, and J. Lee, Polyphenol-rich black chokeberry (aronia melanocarpa) extract regulates the expression of genes critical for intestinal cholesterol flux in caco-2 cells, J. Nutr. Biochem, vol.24, pp.1564-1570, 2013.

D. Feng, J. Zou, S. Zhang, X. Li, and M. Lu, Hypocholesterolemic activity of curcumin is mediated by down-regulating the expression of niemann-pick c1-like 1 in hamsters, J. Agric. Food Chem, vol.65, pp.276-280, 2017.

A. A. Hayashi, J. Webb, J. Choi, C. Baker, M. Lino et al., Intestinal sr-bi is upregulated in insulin-resistant states and is associated with overproduction of intestinal apob48-containing lipoproteins, Am. J. Physiol. Gastrointest. Liver Physiol, vol.301, pp.326-337, 2011.

P. J. Voshol, M. Schwarz, A. Rigotti, M. Krieger, A. K. Groen et al., Down-regulation of intestinal scavenger receptor class b, type i (sr-bi) expression in rodents under conditions of deficient bile delivery to the intestine, Biochem. J, vol.356, pp.317-325, 2001.

L. P. Duan, H. H. Wang, A. Ohashi, and D. Q. Wang, Role of intestinal sterol transporters abcg5, abcg8, and npc1l1 in cholesterol absorption in mice: Gender and age effects, Am. J. Physiol. Gastrointest. Liver Physiol, vol.290, pp.269-276, 2006.

L. Zhou, H. Yang, E. U. Okoro, and Z. Guo, Up-regulation of cholesterol absorption is a mechanism for cholecystokinin-induced hypercholesterolemia, J. Biol. Chem, vol.289, pp.12989-12999, 2014.

E. Grenier, C. Garofalo, E. Delvin, and E. Levy, Modulatory role of pyy in transport and metabolism of cholesterol in intestinal epithelial cells, PLoS ONE, vol.7, 2012.

E. Reboul, Vitamin e intestinal absorption: Regulation of membrane transport across the enterocyte, IUBMB Life, vol.71, pp.416-423, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02022877

C. Desmarchelier, J. F. Landrier, and P. Borel, Genetic factors involved in the bioavailability of tomato carotenoids, Curr. Opin. Clin. Nutr. Metab. Care, vol.21, pp.489-497, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01988648