, Available online, Cardiovascular Diseases (CVDs), p.28, 2019.

R. Ferrari, C. Aguiar, E. Alegria, R. C. Bonadonna, F. Cosentino et al., Current practice in identifying and treating cardiovascular risk, with a focus on residual risk associated with atherogenic dyslipidaemia, Eur. Heart J. Suppl. J. Eur. Soc. Cardiol, vol.18, pp.2-12, 2016.

C. Aguiar, E. Alegria, R. C. Bonadonna, A. L. Catapano, F. Cosentino et al., A review of the evidence on reducing macrovascular risk in patients with atherogenic dyslipidaemia: A report from an expert consensus meeting on the role of fenofibrate-statin combination therapy, Atheroscler. Suppl, vol.19, pp.1-12, 2015.

M. Adiels, S. Olofsson, M. Taskinen, and J. Borén, Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome, Arterioscler. Thromb. Vasc. Biol, vol.28, pp.1225-1236, 2008.

H. Duez, B. Lamarche, K. D. Uffelman, R. Valero, J. S. Cohn et al., Hyperinsulinemia is associated with increased production rate of intestinal apolipoprotein B-48-containing lipoproteins in humans, Arterioscler. Thromb. Vasc. Biol, vol.26, pp.1357-1363, 2006.

S. Rashid, T. Watanabe, T. Sakaue, and G. F. Lewis, Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: The combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity, Clin. Biochem, vol.36, pp.421-429, 2003.

J. Lopez-miranda, C. Williams, and D. Lairon, Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism, Br. J. Nutr, vol.98, pp.458-473, 2007.

B. G. Nordestgaard, Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: New insights from epidemiology, genetics, and biology, Circ. Res, vol.118, pp.547-563, 2016.

S. Dash, C. Xiao, C. Morgantini, and G. F. Lewis, New insights into the regulation of chylomicron production, Annu. Rev. Nutr, vol.35, pp.265-294, 2015.

C. B. Dias, P. J. Moughan, L. G. Wood, H. Singh, and M. L. Garg, Postprandial lipemia: Factoring in lipemic response for ranking foods for their healthiness, Lipids Health Dis, vol.16, 2017.

P. J. Meikle, C. K. Barlow, N. A. Mellett, P. A. Mundra, M. P. Bonham et al., Postprandial plasma phospholipids in men are influenced by the source of dietary fat, J. Nutr, vol.145, pp.2012-2018, 2015.

M. P. Bonham, K. M. Linderborg, A. Dordevic, A. E. Larsen, K. Nguo et al., Lipidomic profiling of chylomicron triacylglycerols in response to high fat meals, Lipids, vol.48, pp.39-50, 2013.

M. C. Murphy, S. G. Isherwood, S. Sethi, B. J. Gould, J. W. Wright et al., Postprandial lipid and hormone responses to meals of varying fat contents: Modulatory role of lipoprotein lipase?, Eur. J. Clin. Nutr, vol.49, pp.578-588, 1995.

C. Dubois, G. Beaumier, C. Juhel, M. Armand, H. Portugal et al., Effects of graded amounts (0-50 g) of dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults, Am. J. Clin. Nutr, vol.67, pp.31-38, 1998.

C. Vors, G. Pineau, J. Drai, E. Meugnier, S. Pesenti et al., Postprandial endotoxemia linked with chylomicrons and lipopolysaccharides handling in obese versus lean men: A lipid dose-effect trial, J. Clin. Endocrinol. Metab, vol.100, pp.3427-3435, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01850607

C. Maffeis, M. G. Surano, S. Cordioli, S. Gasperotti, M. Corradi et al., A high-fat vs. a moderate-fat meal in obese boys: Nutrient balance, appetite, and gastrointestinal hormone changes, Obesity, vol.18, pp.449-455, 2010.

J. C. Cohen, T. D. Noakes, and A. J. Benade, Serum triglyceride responses to fatty meals: Effects of meal fat content, Am. J. Clin. Nutr, vol.47, pp.825-827, 1988.

K. G. Jackson, M. D. Robertson, B. A. Fielding, K. N. Frayn, and C. M. Williams, Olive oil increases the number of triacylglycerol-rich chylomicron particles compared with other oils: An effect retained when a second standard meal is fed, Am. J. Clin. Nutr, vol.76, pp.942-949, 2002.

D. Lairon, Macronutrient intake and modulation on chylomicron production and clearance, Atheroscler. Suppl, vol.9, pp.45-48, 2008.

N. Panth, C. B. Dias, K. Wynne, H. Singh, and M. L. Garg, Medium-chain fatty acids lower postprandial lipemia: A randomized crossover trial, Clin. Nutr. Edinb. Scotl, 2019.

K. G. Jackson, E. J. Wolstencroft, P. A. Bateman, P. Yaqoob, and C. M. Williams, Greater enrichment of triacylglycerol-rich lipoproteins with apolipoproteins E and C-III after meals rich in saturated fatty acids than after meals rich in unsaturated fatty acids, Am. J. Clin. Nutr, vol.81, pp.25-34, 2005.

C. B. Dias, M. Phang, L. G. Wood, and M. L. Garg, Postprandial lipid responses do not differ following consumption of butter or vegetable oil when consumed with omega-3 polyunsaturated fatty acids, Lipids, vol.50, pp.339-347, 2015.

H. M. Tulk and L. E. Robinson, Modifying the n-6/ n-3 polyunsaturated fatty acid ratio of a high-saturated fat challenge does not acutely attenuate postprandial changes in inflammatory markers in men with metabolic syndrome, Metabolism, vol.58, pp.1709-1716, 2009.

C. J. Masson and R. P. Mensink, Exchanging saturated fatty acids for (n-6) polyunsaturated fatty acids in a mixed meal may decrease postprandial lipemia and markers of inflammation and endothelial activity in overweight men, J. Nutr, vol.141, pp.816-821, 2011.

C. Zheng, C. Khoo, J. Furtado, K. Ikewaki, and F. M. Sacks, Dietary monounsaturated fat activates metabolic pathways for triglyceride-rich lipoproteins that involve apolipoproteins E and C-III, Am. J. Clin. Nutr, vol.88, pp.272-281, 2008.

N. R. Matthan, F. K. Welty, P. H. Barrett, C. Harausz, G. G. Dolnikowski et al., Dietary hydrogenated fat increases high-density lipoprotein apoA-I catabolism and decreases low-density lipoprotein apoB-100 catabolism in hypercholesterolemic women, Arterioscler. Thromb. Vasc. Biol, vol.24, pp.1092-1097, 2004.

A. F. Cicero, A. Colletti, G. Bajraktari, O. Descamps, D. M. Djuric et al., Lipid-lowering nutraceuticals in clinical practice: Position paper from an International Lipid Expert Panel, Nutr. Rev, vol.75, pp.731-767, 2017.

L. Hooper, R. L. Thompson, R. A. Harrison, C. D. Summerbell, A. R. Ness et al., Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: Systematic review, BMJ, vol.332, pp.752-760, 2006.

T. Aung, J. Halsey, D. Kromhout, H. C. Gerstein, R. Marchioli et al., Associations of Omega-3 Fatty Acid Supplement Use With Cardiovascular Disease Risks: Meta-analysis of 10 Trials Involving 77 917 Individuals, JAMA Cardiol, vol.3, pp.225-234, 2018.

A. S. Abdelhamid, T. J. Brown, J. S. Brainard, P. Biswas, G. C. Thorpe et al., Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease, Cochrane Database Syst. Rev, vol.11, p.3177, 2018.

D. L. Bhatt, P. G. Steg, M. Miller, E. A. Brinton, T. A. Jacobson et al., Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia, N. Engl. J. Med, vol.380, pp.11-22, 2019.

M. F. Piepoli, A. W. Hoes, S. Agewall, C. Albus, C. Brotons et al., European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR), Eur. Heart J, vol.37, pp.2315-2381, 2016.

D. K. Arnett, R. S. Blumenthal, M. A. Albert, A. B. Buroker, Z. D. Goldberger et al., ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease. Circulation, 2019.

A. L. Catapano, I. Graham, G. De-backer, O. Wiklund, M. J. Chapman et al., ESC/EAS Guidelines for the Management of Dyslipidaemias, Eur. Heart J, vol.37, pp.2999-3058, 2016.

C. Dubois, M. Armand, N. Mekki, H. Portugal, A. M. Pauli et al., Effects of increasing amounts of dietary cholesterol on postprandial lipemia and lipoproteins in human subjects, J. Lipid Res, vol.35, 1993.

C. Taggart, J. Gibney, D. Owens, P. Collins, A. Johnson et al., The role of dietary cholesterol in the regulation of postprandial apolipoprotein B48 levels in diabetes, Diabet. Med. J. Br. Diabet. Assoc, vol.14, pp.1051-1058, 1997.

H. N. Ginsberg, W. Karmally, M. Siddiqui, S. Holleran, A. R. Tall et al., A dose-response study of the effects of dietary cholesterol on fasting and postprandial lipid and lipoprotein metabolism in healthy young men, Arterioscler. Thromb. J. Vasc. Biol, vol.14, pp.576-586, 1994.

E. J. Parks, R. M. Krauss, M. P. Christiansen, R. A. Neese, and M. K. Hellerstein, Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, production, and clearance, J. Clin. Invest, vol.104, pp.1087-1096, 1999.

G. Livesey and R. Taylor, Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: Meta-analyses and meta-regression models of intervention studies, Am. J. Clin. Nutr, vol.88, pp.1419-1437, 2008.

N. Matikainen, S. Söderlund, E. Björnson, L. H. Bogl, K. H. Pietiläinen et al., Fructose intervention for 12 weeks does not impair glycemic control or incretin hormone responses during oral glucose or mixed meal tests in obese men, Nutr. Metab. Cardiovasc. Dis, vol.27, pp.534-542, 2017.

R. A. Evans, M. Frese, J. Romero, J. H. Cunningham, and K. E. Mills, Chronic fructose substitution for glucose or sucrose in food or beverages has little effect on fasting blood glucose, insulin, or triglycerides: A systematic review and meta-analysis, Am. J. Clin. Nutr, vol.106, pp.519-529, 2017.

G. A. Bray, Fructose and risk of cardiometabolic disease, Curr. Atheroscler. Rep, vol.14, pp.570-578, 2012.

V. Campos, C. Despland, V. Brandejsky, R. Kreis, P. Schneiter et al., Metabolic Effects of Replacing Sugar-Sweetened Beverages with Artificially-Sweetened Beverages in Overweight Subjects with or without Hepatic Steatosis: A Randomized Control Clinical Trial, vol.9, p.202, 2017.

K. L. Stanhope, S. C. Griffen, A. A. Bremer, R. G. Vink, E. J. Schaefer et al., Metabolic responses to prolonged consumption of glucose-and fructose-sweetened beverages are not associated with postprandial or 24-h glucose and insulin excursions, Am. J. Clin. Nutr, vol.94, pp.112-119, 2011.

K. L. Stanhope, A. A. Bremer, V. Medici, K. Nakajima, Y. Ito et al., Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women, J. Clin. Endocrinol. Metab, vol.96, 2011.

K. L. Stanhope, J. M. Schwarz, N. L. Keim, S. C. Griffen, A. A. Bremer et al., Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans, J. Clin. Invest, vol.119, pp.1322-1334, 2009.

C. Despland, B. Walther, C. Kast, V. Campos, V. Rey et al., A randomized-controlled clinical trial of high fructose diets from either Robinia honey or free fructose and glucose in healthy normal weight males, Clin. Nutr. ESPEN, vol.19, pp.16-22, 2017.

J. B. Moore, P. J. Gunn, and B. A. Fielding, The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease, Nutrients, vol.6, pp.5679-5703, 2014.

D. Wang, D. Sievenpiper, J. L. De-souza, R. J. Cozma, A. I. Chiavaroli et al., Effect of fructose on postprandial triglycerides: A systematic review and meta-analysis of controlled feeding trials, Atherosclerosis, vol.232, pp.125-133, 2014.

L. Smolders, R. P. Mensink, and J. Plat, An acute intake of theobromine does not change postprandial lipid metabolism, whereas a high-fat meal lowers chylomicron particle number, Nutr. Res, vol.40, pp.85-94, 2017.

J. C. Cohen and G. M. Berger, Effects of glucose ingestion on postprandial lipemia and triglyceride clearance in humans, J. Lipid Res, vol.31, pp.597-602, 1990.

S. Westphal, A. Leodolter, S. Kahl, J. Dierkes, P. Malfertheiner et al., Addition of glucose to a fatty meal delays chylomicrons and suppresses VLDL in healthy subjects, Eur. J. Clin. Invest, vol.32, pp.322-327, 2002.

J. Jeppesen, Y. I. Chen, M. Y. Zhou, P. Schaaf, A. Coulston et al., Postprandial triglyceride and retinyl ester responses to oral fat: Effects of fructose, Am. J. Clin. Nutr, vol.61, pp.787-791, 1995.

K. I. Grant, M. P. Marais, and M. A. Dhansay, Sucrose in a lipid-rich meal amplifies the postprandial excursion of serum and lipoprotein triglyceride and cholesterol concentrations by decreasing triglyceride clearance, Am. J. Clin. Nutr, vol.59, pp.853-860, 1994.

A. Harbis, C. Defoort, H. Narbonne, C. Juhel, M. Senft et al., Acute hyperinsulinism modulates plasma apolipoprotein B-48 triglyceride-rich lipoproteins in healthy subjects during the postprandial period, Diabetes, vol.50, pp.462-469, 2001.

F. Shishehbor, H. M. Roche, and M. J. Gibney, The effect of acute carbohydrate load on the monophasic or biphasic nature of the postprandial lipaemic response to acute fat ingestion in human subjects, Br. J. Nutr, vol.80, pp.411-418, 1998.

A. Harbis, S. Perdreau, S. Vincent-baudry, M. Charbonnier, M. Bernard et al., Glycemic and insulinemic meal responses modulate postprandial hepatic and intestinal lipoprotein accumulation in obese, insulin-resistant subjects, Am. J. Clin. Nutr, vol.80, pp.896-902, 2004.

H. M. Roche, Dietary carbohydrates and triacylglycerol metabolism, Proc. Nutr. Soc, vol.58, pp.201-207, 1999.

P. Stahel, C. Xiao, and G. Lewis, Control of intestinal lipoprotein secretion by dietary carbohydrates, Curr. Opin. Lipidol, vol.29, pp.24-29, 2018.

F. Theytaz, S. De-giorgi, L. Hodson, N. Stefanoni, V. Rey et al., Metabolic fate of fructose ingested with and without glucose in a mixed meal, Nutrients, vol.6, pp.2632-2649, 2014.

C. Xiao, S. Dash, C. Morgantini, and G. F. Lewis, Novel role of enteral monosaccharides in intestinal lipoprotein production in healthy humans, Arterioscler. Thromb. Vasc. Biol, vol.33, pp.1056-1062, 2013.

C. Xiao, S. Dash, C. Morgantini, and G. F. Lewis, Intravenous Glucose Acutely Stimulates Intestinal Lipoprotein Secretion in Healthy Humans, Arterioscler. Thromb. Vasc. Biol, vol.36, pp.1457-1463, 2016.

A. J. Bidwell, Chronic Fructose Ingestion as a Major Health Concern: Is a Sedentary Lifestyle Making It Worse? A Review, vol.9, p.549, 2017.

E. Grenier, G. Mailhot, D. Dion, Z. Ravid, S. Spahis et al., Role of the apical and basolateral domains of the enterocyte in the regulation of cholesterol transport by a high glucose concentration, Biochem. Cell Biol. Biochim. Biol. Cell, vol.91, pp.476-486, 2013.

A. Karamanlis, R. Chaikomin, S. Doran, M. Bellon, F. D. Bartholomeusz et al., Effects of protein on glycemic and incretin responses and gastric emptying after oral glucose in healthy subjects, Am. J. Clin. Nutr, vol.86, pp.1364-1368, 2007.

M. C. Geraedts, F. J. Troost, M. A. Fischer, L. Edens, and W. H. Saris, Direct induction of CCK and GLP-1 release from murine endocrine cells by intact dietary proteins, Mol. Nutr. Food Res, vol.55, pp.476-484, 2011.

D. Jakubowicz and O. Froy, Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and Type 2 diabetes, J. Nutr. Biochem, vol.24, pp.1-5, 2013.

S. Kersten, Physiological regulation of lipoprotein lipase, Biochim. Biophys. Acta, vol.1841, pp.919-933, 2014.

J. W. Jocken, D. Langin, E. Smit, W. H. Saris, C. Valle et al., Adipose triglyceride lipase and hormone-sensitive lipase protein expression is decreased in the obese insulin-resistant state, J. Clin. Endocrinol. Metab, vol.92, pp.2292-2299, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00409647

R. N. Bergman and M. Ader, Free fatty acids and pathogenesis of type 2 diabetes mellitus, Trends Endocrinol. Metab, vol.11, pp.351-356, 2000.

J. C. Cohen, Protein ingestion does not affect postprandial lipaemia or chylomicron-triglyceride clearance, Eur. J. Clin. Nutr, vol.43, pp.497-499, 1989.

S. Westphal, S. Kastner, E. Taneva, A. Leodolter, J. Dierkes et al., Postprandial lipid and carbohydrate responses after the ingestion of a casein-enriched mixed meal, Am. J. Clin. Nutr, vol.80, pp.284-290, 2004.

S. Westphal, E. Taneva, S. Kastner, J. Martens-lobenhoffer, S. Bode-boger et al., Endothelial dysfunction induced by postprandial lipemia is neutralized by addition of proteins to the fatty meal, Atherosclerosis, vol.185, pp.313-319, 2006.

L. Brader, L. Holm, L. Mortensen, C. Thomsen, A. Astrup et al., Acute effects of casein on postprandial lipemia and incretin responses in type 2 diabetic subjects, Nutr. Metab. Cardiovasc. Dis, vol.20, pp.101-109, 2010.

L. S. Mortensen, M. L. Hartvigsen, L. J. Brader, A. Astrup, J. Schrezenmeir et al., Differential effects of protein quality on postprandial lipemia in response to a fat-rich meal in type 2 diabetes: Comparison of whey, casein, gluten, and cod protein, Am. J. Clin. Nutr, vol.90, pp.41-48, 2009.

J. Holmer-jensen, L. S. Mortensen, A. Astrup, M. De-vrese, J. J. Holst et al., Acute differential effects of dietary protein quality on postprandial lipemia in obese non-diabetic subjects, Nutr. Res, vol.33, pp.34-40, 2013.

S. Pal, V. Ellis, and S. Ho, Acute effects of whey protein isolate on cardiovascular risk factors in overweight, post-menopausal women, Atherosclerosis, vol.212, pp.339-344, 2010.

J. Holmer-jensen, M. L. Hartvigsen, L. S. Mortensen, A. Astrup, M. De-vrese et al., Acute differential effects of milk-derived dietary proteins on postprandial lipaemia in obese non-diabetic subjects, Eur. J. Clin. Nutr, vol.66, pp.32-38, 2012.

L. S. Mortensen, J. Holmer-jensen, M. L. Hartvigsen, V. K. Jensen, A. Astrup et al., Effects of different fractions of whey protein on postprandial lipid and hormone responses in type 2 diabetes, Eur. J. Clin. Nutr, vol.66, pp.799-805, 2012.

F. Mariotti, M. Valette, C. Lopez, H. Fouillet, M. H. Famelart et al., Casein Compared with Whey Proteins Affects the Organization of Dietary Fat during Digestion and Attenuates the Postprandial Triglyceride Response to a Mixed High-Fat Meal in Healthy, Overweight Men, J. Nutr, vol.145, pp.2657-2664, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535341

A. Bjornshave, T. N. Johansen, B. Amer, T. K. Dalsgaard, J. J. Holst et al., Pre-meal and postprandial lipaemia in subjects with the metabolic syndrome: Effects of timing and protein quality (randomised crossover trial), Br. J. Nutr, vol.2019, pp.1-10

A. Bjornshave, J. J. Holst, and K. Hermansen, Pre-Meal Effect of Whey Proteins on Metabolic Parameters in Subjects with and without Type 2 Diabetes: A Randomized, Crossover Trial. Nutrients, vol.10, 2018.

J. C. Mamo, A. P. James, M. J. Soares, D. G. Griffiths, K. Purcell et al., A low-protein diet exacerbates postprandial chylomicron concentration in moderately dyslipidaemic subjects in comparison to a lean red meat protein-enriched diet, Eur. J. Clin. Nutr, vol.59, pp.1142-1148, 2005.

M. Bohl, A. Bjornshave, K. V. Rasmussen, A. G. Schioldan, B. Amer et al., Dairy proteins, dairy lipids, and postprandial lipemia in persons with abdominal obesity (DairyHealth): A 12-wk, randomized, parallel-controlled, double-blinded, diet intervention study, Am. J. Clin. Nutr, vol.101, pp.870-878, 2015.

D. Lairon, B. Play, and D. Jourdheuil-rahmani, Digestible and indigestible carbohydrates: Interactions with postprandial lipid metabolism, J. Nutr. Biochem, vol.18, pp.217-227, 2007.

M. M. Grundy, C. H. Edwards, A. R. Mackie, M. J. Gidley, P. J. Butterworth et al., Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism, Br. J. Nutr, vol.116, pp.816-833, 2016.

I. Bourdon, W. Yokoyama, P. Davis, C. Hudson, R. Backus et al., Postprandial lipid, glucose, insulin, and cholecystokinin responses in men fed barley pasta enriched with beta-glucan, Am. J. Clin. Nutr, vol.69, pp.55-63, 1999.

L. Cara, C. Dubois, P. Borel, M. Armand, M. Senft et al., Effects of oat bran, rice bran, wheat fiber, and wheat germ on postprandial lipemia in healthy adults, Am. J. Clin. Nutr, vol.55, pp.81-88, 1992.

A. Lia, H. Andersson, N. Mekki, C. Juhel, M. Senft et al., Postprandial lipemia in relation to sterol and fat excretion in ileostomy subjects given oat-bran and wheat test meals, Am. J. Clin. Nutr, vol.66, pp.357-365, 1997.

C. Dubois, L. Cara, M. Armand, P. Borel, M. Senft et al., Effects of pea and soybean fibre on postprandial lipaemia and lipoproteins in healthy adults, Eur. J. Clin. Nutr, vol.47, pp.508-520, 1993.

B. Sandstrom, L. T. Hansen, and A. Sorensen, Pea fiber lowers fasting and postprandial blood triglyceride concentrations in humans, J. Nutr, vol.124, pp.2386-2396, 1994.

M. Kristensen, F. Savorani, S. Christensen, S. B. Engelsen, S. Bugel et al., Flaxseed dietary fibers suppress postprandial lipemia and appetite sensation in young men, Nutr. Metab. Cardiovasc. Dis, vol.23, pp.136-143, 2013.

A. Khossousi, C. W. Binns, S. S. Dhaliwal, and S. Pal, The acute effects of psyllium on postprandial lipaemia and thermogenesis in overweight and obese men, Br. J. Nutr, vol.99, pp.1068-1075, 2008.

Y. Kishimoto, H. Oga, H. Tagami, K. Okuma, and D. T. Gordon, Suppressive effect of resistant maltodextrin on postprandial blood triacylglycerol elevation, Eur. J. Nutr, vol.46, pp.133-138, 2007.

S. Kondo, J. Z. Xiao, N. Takahashi, K. Miyaji, K. Iwatsuki et al., Suppressive effects of dietary fiber in yogurt on the postprandial serum lipid levels in healthy adult male volunteers, Biosci. Biotechnol. Biochem, vol.68, pp.1135-1138, 2004.

C. L. Redard, P. A. Davis, and B. O. Schneeman, Dietary fiber and gender: Effect on postprandial lipemia, Am. J. Clin. Nutr, vol.52, pp.837-845, 1990.

M. Ulmius, A. Johansson, and G. Onning, The influence of dietary fibre source and gender on the postprandial glucose and lipid response in healthy subjects, Eur. J. Nutr, vol.48, pp.395-402, 2009.

K. C. Maki, M. H. Davidson, M. S. Witchger, M. R. Dicklin, and P. Subbaiah, Effects of high-fiber oat and wheat cereals on postprandial glucose and lipid responses in healthy men, Int. J. Vitam. Nutr. Res, vol.77, pp.347-356, 2007.

C. Dubois, M. Armand, M. Senft, H. Portugal, A. M. Pauli et al., Chronic oat bran intake alters postprandial lipemia and lipoproteins in healthy adults, Am. J. Clin. Nutr, vol.61, pp.325-333, 1995.

T. M. Wolever, R. A. Hegele, P. W. Connelly, T. P. Ransom, J. A. Story et al., Long-term effect of soluble-fiber foods on postprandial fat metabolism in dyslipidemic subjects with apo E3 and apo E4 genotypes, Am. J. Clin. Nutr, vol.66, pp.584-590, 1997.

L. Bozzetto, G. Annuzzi, G. Costabile, L. Costagliola, M. Giorgini et al., A CHO/fibre diet reduces and a MUFA diet increases postprandial lipaemia in type 2 diabetes: No supplementary effects of low-volume physical training, Acta Diabetol, vol.51, pp.385-393, 2014.

C. De-natale, G. Annuzzi, L. Bozzetto, R. Mazzarella, G. Costabile et al., Effects of a plant-based high-carbohydrate/high-fiber diet versus high-monounsaturated fat/low-carbohydrate diet on postprandial lipids in type 2 diabetic patients, Diabetes Care, vol.32, pp.2168-2173, 2009.

D. Zeevi, T. Korem, N. Zmora, D. Israeli, D. Rothschild et al., Personalized Nutrition by Prediction of Glycemic Responses, Cell, vol.163, pp.1079-1094, 2015.

E. M. Ooi, G. F. Watts, D. C. Chan, J. Pang, V. S. Tenneti et al., Effects of extended-release niacin on the postprandial metabolism of Lp(a) and ApoB-100-containing lipoproteins in statin-treated men with type 2 diabetes mellitus, Arterioscler. Thromb. Vasc. Biol, vol.35, pp.2686-2693, 2015.

J. R. Guyton, A. C. Goldberg, R. A. Kreisberg, D. L. Sprecher, H. R. Superko et al., Effectiveness of once-nightly dosing of extended-release niacin alone and in combination for hypercholesterolemia, Am. J. Cardiol, vol.82, pp.737-743, 1998.

M. B. Elam, D. B. Hunninghake, K. B. Davis, R. Garg, C. Johnson et al., Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: The ADMIT study: A randomized trial. Arterial Disease Multiple Intervention Trial, JAMA, vol.284, pp.1263-1270, 2000.

A. M. Benjo, R. C. Maranhao, S. R. Coimbra, A. C. Andrade, D. Favarato et al., Accumulation of chylomicron remnants and impaired vascular reactivity occur in subjects with isolated low HDL cholesterol: Effects of niacin treatment, Atherosclerosis, vol.187, pp.116-122, 2006.

J. M. King, J. R. Crouse, J. G. Terry, T. M. Morgan, B. J. Spray et al., Evaluation of effects of unmodified niacin on fasting and postprandial plasma lipids in normolipidemic men with hypoalphalipoproteinemia, Am. J. Med, vol.97, pp.323-331, 1994.

J. Pang, D. C. Chan, S. J. Hamilton, V. S. Tenneti, G. F. Watts et al., Effect of niacin on triglyceride-rich lipoprotein apolipoprotein B-48 kinetics in statin-treated patients with type 2 diabetes, Diabetes Obes. Metab, vol.18, pp.384-391, 2016.

J. A. Pieper, Understanding niacin formulations, Am. J. Manag. Care, vol.8, pp.308-314, 2002.

R. H. Nelson, D. Vlazny, A. Smailovic, and J. M. Miles, Intravenous niacin acutely improves the efficiency of dietary fat storage in lean and obese humans, Diabetes, vol.61, pp.3172-3175, 2012.

S. H. Ganji, S. Tavintharan, D. Zhu, Y. Xing, V. S. Kamanna et al., Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells, J. Lipid Res, vol.45, pp.1835-1845, 2004.

S. Schandelmaier, M. Briel, R. Saccilotto, K. K. Olu, A. Arpagaus et al., Niacin for primary and secondary prevention of cardiovascular events, Cochrane Database Syst. Rev, vol.6, 2017.

S. I. Koo and D. E. Turk, Effect of zinc deficiency on the ultrastructure of the pancreatic acinar cell and intestinal epithelium in the rat, J. Nutr, vol.107, pp.896-908, 1977.

S. I. Koo and D. E. Turk, Effect of zinc deficiency on intestinal transport triglyceride in the rat, J. Nutr, vol.107, pp.909-919, 1977.

S. I. Koo, D. A. Henderson, K. Algilani, and J. E. Norvell, Effect of marginal zinc deficiency on the morphological characteristics of intestinal nascent chylomicrons and distribution of soluble apoproteins of lymph chylomicrons, Am. J. Clin. Nutr, vol.42, pp.671-680, 1985.

S. I. Koo, K. Algilani, J. E. Norvell, and D. A. Henderson, Delayed plasma clearance and hepatic uptake of lymph chylomicron 14C-cholesterol in marginally zinc-deficient rats, Am. J. Clin. Nutr, vol.43, pp.429-437, 1986.

S. I. Koo, C. C. Lee, and J. E. Norvell, Effect of marginal zinc deficiency on the apolipoprotein-B content and size of mesenteric lymph chylomicrons in adult rats, Lipids, vol.22, pp.1035-1040, 1987.

S. K. Reaves, J. C. Fanzo, J. Y. Wu, Y. R. Wang, Y. W. Wu et al., Plasma apolipoprotein B-48, hepatic apolipoprotein B mRNA editing and apolipoprotein B mRNA editing catalytic subunit-1 mRNA levels are altered in zinc-deficient rats, J. Nutr, vol.129, pp.1855-1861, 1999.

J. Scott, N. Navaratnam, S. Bhattacharya, and J. R. Morrison, The apolipoprotein B messenger RNA editing enzyme, Curr. Opin. Lipidol, vol.5, pp.87-93, 1994.

S. K. Reaves, J. Y. Wu, Y. Wu, J. C. Fanzo, Y. R. Wang et al., Regulation of intestinal apolipoprotein B mRNA editing levels by a zinc-deficient diet and cDNA cloning of editing protein in hamsters, J. Nutr, vol.130, pp.2166-2173, 2000.

F. Nassir, R. K. Blanchard, A. Mazur, R. J. Cousins, and N. O. Davidson, Apolipoprotein B mRNA editing is preserved in the intestine and liver of zinc-deficient rats, J. Nutr, vol.126, pp.860-864, 1996.

A. Cerovic, I. Miletic, S. Sobajic, D. Blagojevic, D. R. Jones et al., Effect of dietary zinc on the levels and distribution of Fatty acids and vitamin A in blood plasma chylomicrons, Biol. Trace Elem. Res, vol.112, pp.145-158, 2006.

S. I. Koo and C. C. Lee, Effect of marginal zinc deficiency on lipoprotein lipase activities in postheparin plasma, skeletal muscle and adipose tissues in the rat, Lipids, vol.24, pp.132-136, 1989.

S. I. Kettler, K. Eder, A. Kettler, and M. Kirchgessner, Zinc deficiency and the activities of lipoprotein lipase in plasma and tissues of rats force-fed diets with coconut oil or fish oil, J. Nutr. Biochem, vol.11, pp.132-138, 2000.

S. I. Koo, C. C. Lee, and J. E. Norvell, Effect of copper deficiency on the lymphatic absorption of cholesterol, plasma chylomicron clearance, and postheparin lipase activities, Proc. Soc. Exp. Biol. Med, vol.188, pp.410-419, 1988.

C. Motta, E. Gueux, A. Mazur, and Y. Rayssiguier, Lipid fluidity of triacylglycerol-rich lipoproteins isolated from copper-deficient rats, Br. J. Nutr, vol.75, pp.767-773, 1996.

E. W. Strauss, Effects of calcium and magnesium ions upon fat absorption by sacs of everted hamster intestine, Gastroenterology, vol.73, pp.421-424, 1977.

Y. Kishimoto, M. Tani, H. Uto-kondo, E. Saita, M. Iizuka et al., Effects of magnesium on postprandial serum lipid responses in healthy human subjects, Br. J. Nutr, vol.103, pp.469-472, 2010.

J. K. Lorenzen, S. Nielsen, J. J. Holst, I. Tetens, J. F. Rehfeld et al., Effect of dairy calcium or supplementary calcium intake on postprandial fat metabolism, appetite, and subsequent energy intake, Am. J. Clin. Nutr, vol.85, pp.678-687, 2007.

M. Naissides, J. C. Mamo, A. P. James, and S. Pal, The effect of acute red wine polyphenol consumption on postprandial lipaemia in postmenopausal women, Atherosclerosis, vol.177, pp.401-408, 2004.

S. Pal, S. S. Ho, and R. Takechi, Red wine polyphenolics suppress the secretion of ApoB48 from human intestinal CaCo-2 cells, J. Agric. Food Chem, vol.53, pp.2767-2772, 2005.

R. Vidal, S. Hernandez-vallejo, T. Pauquai, O. Texier, M. Rousset et al., Apple procyanidins decrease cholesterol esterification and lipoprotein secretion in Caco-2/TC7 enterocytes, J. Lipid Res, vol.46, pp.258-268, 2005.

Y. Toyoda-ono, M. Yoshimura, M. Nakai, Y. Fukui, S. Asami et al., Suppression of postprandial hypertriglyceridemia in rats and mice by oolong tea polymerized polyphenols, Biosci. Biotechnol. Biochem, vol.71, pp.971-976, 2007.

M. Kobayashi, M. Ichitani, Y. Suzuki, T. Unno, T. Sugawara et al., Black-tea polyphenols suppress postprandial hypertriacylglycerolemia by suppressing lymphatic transport of dietary fat in rats, J. Agric. Food Chem, vol.57, pp.7131-7136, 2009.

T. Unno, M. Tago, Y. Suzuki, A. Nozawa, Y. M. Sagesaka et al., Effect of tea catechins on postprandial plasma lipid responses in human subjects, Br. J. Nutr, vol.93, pp.543-547, 2005.

J. Huang, S. Feng, A. Liu, Z. Dai, H. Wang et al., Green Tea Polyphenol EGCG Alleviates Metabolic Abnormality and Fatty Liver by Decreasing Bile Acid and Lipid Absorption in Mice, Mol. Nutr. Food Res, 2018.

T. Murase, Y. Yokoi, K. Misawa, H. Ominami, Y. Suzuki et al., Coffee polyphenols modulate whole-body substrate oxidation and suppress postprandial hyperglycaemia, hyperinsulinaemia and hyperlipidaemia, Br. J. Nutr, vol.107, pp.1757-1765, 2012.

B. Qin, M. M. Polansky, Y. Sato, K. Adeli, and R. A. Anderson, Cinnamon extract inhibits the postprandial overproduction of apolipoprotein B48-containing lipoproteins in fructose-fed animals, J. Nutr. Biochem, vol.20, pp.901-908, 2009.

B. Qin, H. D. Dawson, N. W. Schoene, M. M. Polansky, and R. A. Anderson, Cinnamon polyphenols regulate multiple metabolic pathways involved in insulin signaling and intestinal lipoprotein metabolism of small intestinal enterocytes, Nutrition, vol.28, pp.1172-1179, 2012.

A. Takahashi, Y. Okazaki, A. Nakamoto, S. Watanabe, H. Sakaguchi et al., Dietary anthocyanin-rich Haskap phytochemicals inhibit postprandial hyperlipidemia and hyperglycemia in rats, J. Oleo. Sci, vol.63, pp.201-209, 2014.

G. Annuzzi, L. Bozzetto, G. Costabile, R. Giacco, A. Mangione et al., Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: A randomized controlled trial, Am. J. Clin. Nutr, vol.99, pp.463-471, 2014.

J. Ubbink, A. Burbidge, and R. Mezzenga, Food structure and functionality: A soft matter perspective, Soft. Matter, vol.4, pp.1569-1581, 2008.

D. J. Jenkins, T. M. Wolever, R. H. Taylor, H. Barker, H. Fielden et al., Glycemic index of foods: A physiological basis for carbohydrate exchange, Am. J. Clin. Nutr, vol.34, pp.362-366, 1981.

G. D. Kolovou, D. P. Mikhailidis, J. Kovar, D. Lairon, B. G. Nordestgaard et al., Assessment and clinical relevance of non-fasting and postprandial triglycerides: An expert panel statement, Curr. Vasc. Pharmacol, vol.9, pp.258-270, 2011.

D. R. Jacobs and L. C. Tapsell, Food, not nutrients, is the fundamental unit in nutrition, Nutr. Rev, vol.65, pp.439-450, 2007.

D. Mozaffarian, Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review, Circulation, vol.133, pp.187-225, 2016.

D. Mozaffarian and D. S. Ludwig, Dietary guidelines in the 21st century-a time for food, JAMA, vol.304, pp.681-682, 2010.

Q. Guo, A. Ye, N. Bellissimo, H. Singh, and D. Rousseau, Modulating fat digestion through food structure design, Prog. Lipid Res, vol.68, pp.109-118, 2017.

C. Vors, G. Pineau, L. Gabert, J. Drai, C. Louche-pelissier et al., Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: A randomized crossover clinical trial, Am. J. Clin. Nutr, vol.97, pp.23-36, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00766661

I. Garaiova, I. A. Guschina, S. F. Plummer, J. Tang, D. Wang et al., A randomised cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification, Nutr. J, vol.6, 2007.

G. Clemente, M. Mancini, F. Nazzaro, G. Lasorella, A. Rivieccio et al., Effects of different dairy products on postprandial lipemia, Nutr. Metab. Cardiovasc. Dis, vol.13, pp.377-383, 2003.

T. Tholstrup, C. E. Hoy, L. N. Andersen, R. D. Christensen, and B. Sandstrom, Does fat in milk, butter and cheese affect blood lipids and cholesterol differently?, J. Am. Coll. Nutr, vol.23, pp.169-176, 2004.

A. Steingoetter, T. Radovic, S. Buetikofer, J. Curcic, D. Menne et al., Imaging gastric structuring of lipid emulsions and its effect on gastrointestinal function: A randomized trial in healthy subjects, Am. J. Clin. Nutr, vol.101, pp.714-724, 2015.

M. Armand, B. Pasquier, M. Andre, P. Borel, M. Senft et al., Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract, Am. J. Clin. Nutr, vol.70, pp.1096-1106, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02420162

K. W. Tan, L. J. Sun, K. K. Goh, and C. J. Henry, Lipid droplet size and emulsification on postprandial glycemia, insulinemia and lipidemia, Food Funct, vol.7, pp.4278-4284, 2016.

H. Singh and A. Ye, Structural and biochemical factors affecting the digestion of protein-stabilized emulsions, Curr. Opin. Colloid Interface Sci, vol.18, pp.360-370, 2013.

J. B. Keogh, T. J. Wooster, M. Golding, L. Day, B. Otto et al., Slowly and rapidly digested fat emulsions are equally satiating but their triglycerides are differentially absorbed and metabolized in humans, J. Nutr, vol.141, pp.809-815, 2011.

D. M. Small, The effects of glyceride structure on absorption and metabolism, Annu. Rev. Nutr, vol.11, pp.413-434, 1991.

S. E. Berry, Triacylglycerol structure and interesterification of palmitic and stearic acid-rich fats: An overview and implications for cardiovascular disease, Nutr. Res. Rev, vol.22, pp.3-17, 2009.

A. Alfieri, E. Imperlini, E. Nigro, D. Vitucci, S. Orru et al., Effects of Plant Oil Interesterified Triacylglycerols on Lipemia and Human Health, Int. J. Mol. Sci, vol.19, 2017.

T. A. Sanders, A. Filippou, S. E. Berry, S. Baumgartner, and R. P. Mensink, Palmitic acid in the sn-2 position of triacylglycerols acutely influences postprandial lipid metabolism, Am. J. Clin. Nutr, vol.94, pp.1433-1441, 2011.

W. L. Hall, M. F. Brito, J. Huang, L. V. Wood, A. Filippou et al., An interesterified palm olein test meal decreases early-phase postprandial lipemia compared to palm olein: A randomized controlled trial, Lipids, vol.49, pp.895-904, 2014.

S. E. Berry, E. A. Tydeman, H. B. Lewis, R. Phalora, J. Rosborough et al., Manipulation of lipid bioaccessibility of almond seeds influences postprandial lipemia in healthy human subjects, Am. J. Clin. Nutr, vol.88, pp.922-929, 2008.

M. M. Grundy, T. Grassby, G. Mandalari, K. W. Waldron, P. J. Butterworth et al., Effect of mastication on lipid bioaccessibility of almonds in a randomized human study and its implications for digestion kinetics, metabolizable energy, and postprandial lipemia, Am. J. Clin. Nutr, vol.101, pp.25-33, 2015.

C. B. Dias, X. Zhu, A. K. Thompson, H. Singh, and M. L. Garg, Effect of the food form and structure on lipid digestion and postprandial lipaemic response, Food Funct, vol.10, pp.112-124, 2019.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI