E. A. Winzeler, Malaria research in the post-genomic era, Nature, vol.455, pp.751-757, 2008.

A. R. Parhizgar and A. Tahghighi, Introducing new antimalarial analogues of chloroquine and amodiaquine: a narrative review, Iran J Med Sci, vol.42, pp.115-143, 2017.

, Chemotherapy of malaria, vol.27, 1981.

N. J. White, S. Pukrittayakamee, T. T. Hien, M. A. Faiz, O. A. Mokuolu et al., Lancet, vol.383, pp.723-758, 2014.

T. E. Wellems and C. V. Plowe, Chloroquine-resistant malaria, J Infect Dis, vol.184, pp.770-776, 2001.

S. J. Lee, E. Silverman, and J. M. Bargman, The role of antimalarial agents in the treatment of SLE and lupus nephritis, Nat Rev Nephrol, vol.7, pp.718-747, 2011.

D. Raoult, M. Drancourt, and G. Vestris, Bactericidal effect of doxycycline associated with lysosomotropic agents on Coxiella burnetii in P388D1 cells, Antimicrob Agents Chemother, vol.34, pp.1512-1526, 1990.

D. Raoult, P. Houpikian, D. H. Tissot, J. M. Riss, J. Arditi-djiane et al., Treatment of Q fever endocarditis: comparison of 2 regimens containing doxycycline and ofloxacin or hydroxychloroquine, Arch Intern Med, vol.159, pp.167-73, 1999.

A. Boulos, J. M. Rolain, and D. Raoult, Antibiotic susceptibility of Tropheryma whipplei in MRC5 cells, Antimicrob Agents Chemother, vol.48, pp.747-52, 2004.

J. M. Rolain, P. Colson, and D. Raoult, Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infection in the 21st century, Int J Antimicrob Agents, vol.30, pp.297-308, 2007.

A. Savarino, J. R. Boelaert, A. Cassone, G. Majori, and R. Cauda, Effects of chloroquine on viral infections: an old drug against today's diseases?, Lancet Infect Dis, vol.3, pp.722-729, 2003.

J. R. Boelaert, J. Piette, and K. Sperber, The potential place of chloroquine in the treatment of HIV-1-infected patients, J Clin Virol, vol.20, pp.137-177, 2001.

C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, vol.395, pp.497-506, 2020.

N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang et al., A novel coronavirus from patients with pneumonia in China, N Engl J Med, vol.382, pp.727-760, 2019.

P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang et al., Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin, 2020.

H. Tsiang and F. Superti, Ammonium chloride and chloroquine inhibit rabies virus infection in neuroblastoma cells, Arch Virol, vol.81, pp.377-82, 1984.

P. Kronenberger, R. Vrijsen, and A. Boeyé, Chloroquine induces empty capsid formation during poliovirus eclipse, J Virol, vol.65, pp.7008-7019, 1991.

W. P. Tsai, P. L. Nara, H. F. Kung, and S. Oroszlan, Inhibition of human immunodeficiency virus infectivity by chloroquine, AIDS Res Hum Retroviruses, vol.6, pp.481-490, 1990.

A. Savarino, L. Gennero, K. Sperber, and J. R. Boelaert, The anti-HIV-1 activity of chloroquine, J Clin Virol, vol.20, pp.131-136, 2001.

F. Romanelli, K. M. Smith, and A. D. Hoven, Chloroquine and hydroxychloroquine as inhibitors of human immunodeficiency virus (HIV-1) activity, Curr Pharm Des, vol.10, pp.2643-2651, 2004.

F. Superti, L. Seganti, W. Orsi, M. Divizia, R. Gabrieli et al., The effect of lipophilic amines on the growth of hepatitis A virus in Frp/3 cells, Arch Virol, vol.96, pp.289-96, 1987.

N. E. Bishop, Examination of potential inhibitors of hepatitis A virus uncoating, Intervirology, vol.41, pp.261-71, 1998.

T. Mizui, S. Yamashina, I. Tanida, Y. Takei, T. Ueno et al., Inhibition of hepatitis C virus replication by chloroquine targeting virus-associated autophagy, J Gastroenterol, vol.45, pp.195-203, 2010.

D. K. Miller and J. Lenard, Antihistaminics, local anesthetics, and other amines as antiviral agents, Proc Natl Acad Sci U S A, vol.78, pp.3605-3614, 1981.

M. Shibata, H. Aoki, T. Tsurumi, Y. Sugiura, Y. Nishiyama et al., Mechanism of uncoating of influenza B virus in MDCK cells: action of chloroquine, J Gen Virol, vol.64, pp.1149-56, 1983.

E. E. Ooi, J. S. Chew, J. P. Loh, and R. C. Chua, In vitro inhibition of human influenza A virus replication by chloroquine, Virol J, vol.3, p.39, 2006.

N. I. Paton, L. Lee, Y. Xu, E. E. Ooi, Y. B. Cheung et al., Chloroquine for influenza prevention: a randomised, double-blind, placebo controlled trial, Lancet Infect Dis, vol.11, pp.677-83, 2011.

Y. Yan, Z. Zou, Y. Sun, X. Li, K. F. Xu et al., Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model, Cell Res, vol.23, pp.300-302, 2013.

X. De-lamballerie, V. Boisson, J. C. Reynier, S. Enault, R. N. Charrel et al., On Chikungunya acute infection and chloroquine treatment, Vector Borne Zoonotic Dis, vol.8, pp.837-877, 2008.

M. Khan, S. R. Santhosh, M. Tiwari, L. Rao, P. V. Parida et al., Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against Chikungunya virus in Vero cells, J Med Virol, vol.82, pp.817-841, 2010.

I. Delogu and X. De-lamballerie, Chikungunya disease and chloroquine treatment, J Med Virol, vol.83, pp.1058-1067, 2011.

V. B. Randolph, G. Winkler, and V. Stollar, Acidotropic amines inhibit proteolytic processing of flavivirus prM protein, Virology, vol.174, issue.90, p.99, 1990.

K. J. Farias, P. R. Machado, R. F. De-almeida-junior, A. A. De-aquino, and B. A. Da-fonseca, Chloroquine interferes with dengue-2 virus replication in U937 cells, Microbiol Immunol, vol.58, pp.318-344, 2014.

R. Delvecchio, L. M. Higa, P. Pezzuto, A. L. Valadao, P. P. Garcez et al., Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models, Viruses, vol.8, 2016.

S. E. Glushakova and I. S. Lukashevich, Early events in arenavirus replication are sensitive to lysosomotropic compounds, Arch Virol, vol.104, pp.157-61, 1989.

M. Porotto, G. Orefice, C. C. Yokoyama, B. A. Mungall, R. Realubit et al., Simulating Henipavirus multicycle replication in a screening assay leads to identification of a promising candidate for therapy, J Virol, vol.83, pp.5148-55, 2009.

A. N. Freiberg, M. N. Worthy, B. Lee, and M. R. Holbrook, Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection, J Gen Virol, vol.91, pp.765-72, 2010.

O. Ferraris, M. Moroso, O. Pernet, S. Emonet, F. Rembert et al., Evaluation of Crimean-Congo hemorrhagic fever virus in vitro inhibition by chloroquine and chlorpromazine, two FDA approved molecules, Antiviral Res, vol.118, pp.75-81, 2015.

S. D. Dowall, A. Bosworth, R. Watson, K. Bewley, I. Taylor et al., Chloroquine inhibited Ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model, J Gen Virol, vol.96, pp.3484-92, 2015.

E. A. Kouroumalis and J. Koskinas, Treatment of chronic active hepatitis B (CAH B) with chloroquine: a preliminary report, Ann Acad Med, vol.15, pp.149-52, 1986.

A. H. Koyama and T. Uchida, Inhibition of multiplication of herpes simplex virus type 1 by ammonium chloride and chloroquine, Virology, vol.138, pp.332-337, 1984.

E. Keyaerts, S. Li, L. Vijgen, E. Rysman, J. Verbeeck et al., Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice, Antimicrob Agents Chemother, vol.53, pp.3416-3437, 2009.

D. Blau and K. Holmes, Human coronavirus HCoV-229E enters susceptible cells via the endocytic pathway, The nidoviruses (coronaviruses and arteriviruses), pp.193-200, 2001.

M. Kono, K. Tatsumi, A. M. Imai, K. Saito, T. Kuriyama et al., Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK, Antiviral Res, vol.77, pp.150-152, 2008.

L. Shen, Y. Yang, F. Ye, G. Liu, M. Desforges et al., Safe and sensitive antiviral screening platform based on recombinant human coronavirus OC43 expressing the luciferase reporter gene, Antimicrob Agents Chemother, vol.60, pp.5492-503, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01351547

A. H. De-wilde, D. Jochmans, C. C. Posthuma, J. C. Zevenhoven-dobbe, S. Van-nieuwkoop et al., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture, Antimicrob Agents Chemother, vol.58, pp.4875-84, 2014.

Y. Mo and D. Fisher, A review of treatment modalities for Middle East respiratory syndrome, J Antimicrob Chemother, vol.71, pp.3340-50, 2016.

A. In and . Jid,

C. Burkard, M. H. Verheije, O. Wicht, S. I. Van-kasteren, F. J. Van-kuppeveld et al., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner, PLoS Pathog, vol.10, p.1004502, 2014.

M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res, vol.30, pp.269-71, 2020.

J. Gao, Z. Tian, and X. Yang, Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci Trends, 2020.

, Multicenter Collaboration Group of Department of Science and Technology of Guangdong Province and Health Commission of Guangdong Province for chloroquine in the treatment of novel coronavirus pneumonia Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia

, Zhonghua Jie He He Hu Xi Za Zhi, vol.43, p.19, 2020.

H. N. Bernstein, Ocular safety of hydroxychloroquine, Ann Ophthalmol, vol.23, pp.292-298, 1991.

N. B. Ratliff, M. L. Estes, J. L. Myles, E. K. Shirey, and J. T. Mcmahon, Diagnosis of chloroquine cardiomyopathy by endomyocardial biopsy, N Engl J Med, vol.316, pp.191-194, 1987.

G. J. Cubero, J. J. Rodriguez-reguero, R. Ortega, and J. M. , Restrictive cardiomyopathy caused by chloroquine, Br Heart J, vol.69, pp.451-453, 1993.

C. Harrison, Coronavirus puts drug repurposing on the fast track, Nature Biotechnology, pp.3-4, 2020.

J. J. Kwiek, T. A. Haystead, and J. Rudolph, Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial quinolines, Biochemistry, vol.43, pp.4538-4585, 2004.

A. Varki, Sialic acids as ligands in recognition phenomena, FASEB J, vol.11, pp.248-55, 1997.

S. Olofsson, U. Kumlin, K. Dimock, and N. Arnberg, Avian influenza and sialic acid receptors: more than meets the eye?, Lancet Infect Dis, vol.5, pp.184-192, 2005.

M. J. Vincent, E. Bergeron, S. Benjannet, B. R. Erickson, P. E. Rollin et al., Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virol J, vol.2, p.69, 2005.

V. Tricou, N. N. Minh, T. P. Van, S. J. Lee, J. Farrar et al., A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults, PLoS Negl Trop Dis, vol.4, p.785, 2010.

B. Gay, E. Bernard, M. Solignat, N. Chazal, C. Devaux et al., pH-dependent entry of Chikungunya virus into Aedes albopictus cells, Infect Genet Evol, vol.12, pp.1275-81, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00679517

Z. Y. Yang, Y. Huang, L. Ganesh, K. Leung, W. P. Kong et al., pHdependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN, J Virol, vol.78, pp.5642-50, 2004.

H. Wang, P. Yang, K. Liu, F. Guo, Y. Zhang et al., SARS coronavirus entry into host cells through a novel clathrin-and caveolae-independent endocytic pathway, Cell Res, vol.18, pp.290-301, 2008.

S. Cassell, J. Edwards, and D. T. Brown, Effects of lysosomotropic weak bases on infection of BHK-21 cells by Sindbis virus, J Virol, vol.52, pp.857-64, 1984.

A. Savarino, M. B. Lucia, E. Rastrelli, S. Rutella, C. Golotta et al., Anti-HIV effects of chloroquine: inhibition of viral particle glycosylation and synergism with protease inhibitors, J Acquir Immune Defic Syndr, vol.35, pp.223-255, 1996.

C. A. Harley, A. Dasgupta, and D. W. Wilson, Characterization of herpes simplex viruscontaining organelles by subcellular fractionation: role for organelle acidification in assembly of infectious particles, J Virol, vol.75, pp.1236-51, 2001.

J. Klumperman, J. K. Locker, A. Meijer, M. C. Horzinek, H. J. Geuze et al., Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding, J Virol, vol.68, pp.6523-6557, 1994.

A. Perrier, A. Bonnin, L. Desmarets, A. Danneels, A. Goffard et al., The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal, J Biol Chem, vol.294, pp.14406-14427, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02323043

S. S. Diebold, T. Kaisho, H. Hemmi, S. Akira, and C. Reis-e-sousa, Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA, Science, vol.303, pp.1529-1560, 2004.

D. Accapezzato, V. Visco, V. Francavilla, C. Molette, T. Donato et al., Chloroquine enhances human CD8 + T cell responses against soluble antigens in vivo, J Exp Med, vol.202, pp.817-845, 2005.

B. Garulli, D. Mario, G. Sciaraffia, E. Accapezzato, D. Barnaba et al., Enhancement of T cell-mediated immune responses to whole inactivated influenza virus by chloroquine treatment in vivo, Vaccine, vol.31, pp.1717-1741, 2013.

M. Steiz, J. Valbracht, J. Quach, and M. Lotz, Gold sodium thiomalate and chloroquine inhibit cytokine production in monocytic THP-1 cells through distinct transcriptional and posttranslational mechanisms, J Clin Immunol, vol.23, pp.477-84, 2003.

L. Briant, V. Robert-hebmann, C. Acquaviva, A. Pelchen-matthews, M. Marsh et al., The protein tyrosine kinase p56 lck is required for triggering NF-?B activation upon interaction of human immunodeficiency virus type 1 envelope glycoprotein gp120 with cell surface CD4, J Virol, vol.72, pp.6207-6221, 1998.

H. Fuld and L. Horwich, Treatment of rheumatoid arthritis with chloroquine, Br Med J, vol.15, pp.1199-201, 1958.

A. H. Mackenzie, Antimalarial drugs for rheumatoid arthritis, Am J Med, vol.75, pp.48-58, 1983.

T. S. Sharma, E. J. Do, and M. Wasko, Anti-malarials: are there benefits beyond mild disease?, Curr Treat Options Rheumatol, vol.2, pp.1-12, 2016.

A. Wozniacka, A. Lesiak, J. Narbutt, D. P. Mccauliffe, and A. Sysa-jedrzejowska, Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients, Lupus, vol.15, pp.268-75, 2006.

O. P. Sharma, Effectiveness of chloroquine and hydroxychloroquine in treating selected patients with sarcoidosis with neurological involvement, Arch Neurol, vol.55, pp.1248-54, 1998.

C. H. Jang, J. H. Choi, M. S. Byun, and D. M. Jue, Chloroquine inhibits production of TNF-?, IL-1 ? and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes, Rheumatology, vol.45, pp.703-713, 2006.

S. Picot, F. Peyron, A. Donadille, J. Vuillez, G. Barbe et al., Chloroquine-induced inhibition of the production of TNF, but not of IL-6, is affected by disruption of iron metabolism, Immunology, vol.80, pp.127-160, 1993.

J. Y. Jeong and D. M. Jue, Chloroquine inhibits processing of tumor necrosis factor in lipopolysaccharide-stimulated RAW 264.7 macrophages, J Immunol, vol.158, pp.4901-4908, 1997.

X. Zhu, W. Ertel, A. Ayala, M. H. Morrison, M. M. Perrin et al., Chloroquine inhibits macrophage tumour necrosis factor-? mRNA transcription, Immunology, vol.80, pp.122-128, 1993.

S. M. Weber and S. M. Levitz, Chloroquine interferes with lipopolysaccharide-induced TNF-? gene expression by a nonlysosomotropic mechanism, J Immunol, vol.20, issue.0, pp.1534-1574

J. Y. Jeong, J. W. Choi, K. I. Jeon, and D. M. Jue, Chloroquine decreases cell-surface expression of tumour necrosis factor receptors in human histiocytic U-937 cells, Immunology, vol.105, pp.83-91, 2002.

P. H. Wang and Y. Cheng, Increasing host cellular receptor-angiotensin-converting enzyme 2 (ACE2) expression by coronavirus may facilitate 2019-nCoV infection, 2020.

R. Li, S. Qiao, and G. Zhang, Analysis of angiotensin-converting enzyme 2 (ACE2) from different species sheds some light on cross-species receptor usage of a novel coronavirus 2019-nCoV, J Infect, 2020.

Q. Zeng, M. A. Langereis, A. Van-vliet, E. G. Huizinga, and R. J. De-groot, Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution, Proc Natl Acad Sci U S A, vol.105, pp.9065-9074, 2008.

M. Bakkers, Y. Lang, L. J. Feistsma, R. Hulswit, S. De-poot et al., Betacoronavirus adaptation to humans involved progressive loss of hemagglutinin-esterase lectin activity, Cell Host Microbe, vol.21, pp.356-66, 2017.

G. Simmons, S. Bertram, I. Glowacka, I. Steffen, C. Chaipan et al., Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion, Virology, vol.413, pp.265-74, 2011.

P. Colson, J. M. Rolain, J. C. Lagier, P. Brouqui, and D. Raoult, Chloroquine and hydroxychloroquine as available weapons to fight COVID-19, Int J Antimicrob Agents, p.105932, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02509381

R. L. Graham, E. F. Donaldson, and R. S. Baric, A decade after SARS: strategies to control emerging coronaviruses, Nat Rev Microbiol, vol.11, pp.836-884, 2013.

A. Milewska, M. Zarebski, P. Nowak, K. Stozek, J. Potempa et al., Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells, J Virol, vol.88, pp.13221-13251, 2014.

A. R. Collins, HLA class I antigen serves as a receptor for human coronavirus OC43, Immunol Invest, vol.22, pp.95-103, 1993.

X. Zhao, F. Guo, F. Liu, A. Cuconati, J. Chang et al., Interferon induction of IFITM proteins promotes infection by human coronavirus OC43, Proc Natl Acad Sci U S A, vol.111, pp.6756-61, 2014.

R. Vlasak, W. Luytjes, W. Spaan, and P. Palese, Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses, Proc Natl Acad Sci U S A, vol.85, pp.4526-4535, 1988.

X. Huang, W. Dong, A. Milewska, A. Golda, Y. Qi et al., Human coronavirus HKU1 spike protein uses O -acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme, J Virol, vol.89, pp.7202-7215, 2015.

C. M. Chan, S. Lau, P. Woo, H. Tse, B. J. Zheng et al., Identification of major histocompatibility complex class I C molecule as an attachment factor that facilitates coronavirus HKU1 spike-mediated infection, J Virol, vol.83, pp.1026-1061, 2009.

J. K. Millet and G. R. Whittaker, Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein, Proc Natl Acad Sci U S A, vol.111, pp.15214-15233, 2014.

Y. Zhao, Z. Zhao, Y. Wang, Y. Zhou, Y. Ma et al., Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan

,

I. Glowacka, S. Bertram, M. A. Müller, P. Allen, E. Soilleux et al., Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response, J Virol, vol.85, pp.4122-4156, 2011.

A. R. Fehr and S. Perlman, Coronaviruses: an overview of their replication and pathogenesis, Methods Mol Biol, vol.1282, pp.1-23, 2015.