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ABSTRACT 33 

The type VI secretion system (T6SS) is a weapon widespread in Gram-negative bacteria that 34 

delivers effectors into target cells. The T6SS is a highly versatile machine as it can target both 35 

eukaryotic and prokaryotic cells, and it has been proposed that T6SS are adapted to the 36 

specific needs of each bacterium. The expression of T6SS gene clusters and the activation of 37 

the secretion apparatus are therefore tightly controlled. In enteroaggregative Escherichia coli 38 

(EAEC), the sci1 T6SS gene cluster is subjected to a complex regulation involving both the 39 

ferric uptake regulator Fur and Dam-dependent DNA methylation. In this study, an additional, 40 

internal, promoter was identified within the sci1 gene cluster using +1 transcriptional 41 

mapping. Further analyses demonstrated that this internal promoter is controlled by a 42 

mechanism strictly identical to that of the main promoter. The Fur binding box overlaps with 43 

the -10 transcriptional element and a Dam methylation site, GATC-32. Hence, the expression 44 

of the distal sci1 genes is repressed and the GATC-32 site is protected from methylation in 45 

iron-rich conditions. The Fur-dependent protection of GATC-32 was confirmed by in vitro 46 

methylation assay. In addition, the methylation of GATC-32 negatively impacts Fur binding. 47 

The expression of the sci1 internal promoter is therefore controlled by iron availability 48 

through Fur regulation whereas Dam-dependent methylation maintains a stable ON 49 

expression in iron-limited conditions. 50 

51 
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IMPORTANCE 52 

Bacteria use weapons to deliver effectors into target cells. One of these weapons, the type VI 53 

secretion system (T6SS), assembles a contractile tail acting as a spring to propel a toxin-54 

loaded needle. Its expression and activation therefore need to be tightly regulated. Here we 55 

identified an internal promoter within the sci1 T6SS gene cluster in enteroaggregative E. coli. 56 

We then show that this internal promoter is controlled by Fur and Dam-dependent 57 

methylation. We further demonstrate that Fur and Dam compete at the -10 transcriptional 58 

element to finely tune the expression of T6SS genes. We propose that this elegant regulatory 59 

mechanism allows the optimum production of the T6SS in conditions where 60 

enteroaggregative E. coli may encounter competing species. 61 

 62 

  63 

64 
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INTRODUCTION 65 

The fate of microbial communities is governed by communication, cooperation and 66 

competition mechanisms between microorganisms (1-9). Bacteria therefore developed an 67 

arsenal of signalling, sensing and antagonistic activities. To eliminate competitors, bacteria 68 

evolved distinct mechanisms: release of antibiotics or bacteriocins in the extracellular 69 

medium, as well as delivery of toxins directly into the target cell (10-12). One of the delivery 70 

apparatuses, the type VI secretion system (T6SS), transports effectors into competing bacteria 71 

using a mechanism similar to that used by contractile injection systems such as 72 

bacteriophages and R-pyocins (13-19). This secretion apparatus is constituted of a ~ 600-nm 73 

long cytoplasmic needle-like structure composed of an inner tube tipped by a spike complex 74 

that is used to penetrate the membrane of the target cell (12, 14, 19). The inner tube is 75 

wrapped by an outer sheath that is assembled under an extended metastable conformation (20, 76 

21). The tail tube/sheath complex is built on a baseplate that is anchored to the cell envelope 77 

by a membrane complex (22-29). Tail tube/sheath assembly, which can be visualised in vivo 78 

by fluorescence microscopy, is completed in a few tens of seconds (30-32). Contraction of the 79 

sheath powers the propulsion of the inner tube to deliver effectors into the target cell (15, 17, 80 

31, 33-35). Effectors are usually charged within the inner tube lumen or loaded onto the spike 81 

complex via direct interactions with the VgrG/PAAR spike or via adaptor proteins (36-45). 82 

The T6SS is a very efficient mechanism and hence is an important player in the 83 

regulation of the microbiota (7, 46). Bacteria equipped with this apparatus colonize more 84 

efficiently the environmental niche and hence have a better access to the resources (47-51). 85 

Most of the T6SS gene clusters are not constitutively expressed and T6SS-dependent 86 

antagonistic activities are usually deployed once cells experience stress or nutrient starvation 87 

conditions (52-57). T6SS gene clusters are therefore subjected to a tight regulation that 88 
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involves sensing of the environmental conditions (52, 53, 55). Most known regulatory 89 

mechanisms are hijacked by T6SSs for their regulation: transcriptional activators and 90 

repressors, alternate sigma factors, histone-like proteins, two-component transduction 91 

cascades, or quorum-sensing systems (52, 53). In addition, a number of T6SSs are post-92 

translationally activated by a threonine phosphorylation pathway in response to cell damages 93 

or envelope stresses (58).  94 

Enteroaggregative Escherichia coli (EAEC) is equipped with two functional T6SSs, 95 

named Sci1 (T6SS-1 subfamily) and Sci2 (T6SS-3 subfamily) (59, 60). These two T6SSs 96 

confer antagonistic activities but are not expressed in the same conditions, suggesting that 97 

T6SS-mediated anti-bacterial activities are required in two conditions that EAEC may 98 

encounter during its life cycle (31, 44). The sci2 gene cluster is expressed during infection 99 

conditions and is activated in laboratory conditions when cells are grown in a synthetic 100 

medium mimicking the macrophage environment (59). This sci2 gene cluster is under the 101 

control of the AraC-like AggR transcriptional regulator (59), which also modulates the 102 

expression of most biofilm determinants (59, 61), suggesting that the Sci2 T6SS is required 103 

for eliminating competing bacteria during aggregation, a phenomena that occurs during host 104 

colonization. By contrast, the sci1 gene cluster is expressed in minimal synthetic media, and 105 

has been shown to be under the dual control of the ferric uptake repressor (Fur) and Dam-106 

dependent methylation (62).  107 

To gain further information on the sci1 gene cluster organization, we defined its 108 

operon structure. RT-PCR experiments showed that all genes are contiguous suggesting that 109 

all the genes are present on a single mRNA or on several overlapping mRNAs. Using +1 110 

transcriptional mapping, we confirmed the existence of a promoter region upstream the first 111 

gene of the cluster but revealed an additional promoter located upstream the EC042_4532 112 
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gene, within the EC042_4531 gene coding sequence. We further identified a Fur-binding 113 

sequence overlapping with the -10 transcriptional box and demonstrated that Fur binds with 114 

high affinity and prevents RNA polymerase access to the promoter. Sequence analyses 115 

showed that this Fur box overlaps with a GATC Dam methylation site, GATC-32. In vivo, we 116 

showed that Fur prevents methylation of the GATC-32 site when cells grew in iron-replete 117 

conditions. In vitro competition experiments confirmed that Fur prevents GATC-32 118 

methylation. In addition, we observed that Dam-dependent methylation of GATC-32 119 

decreases the affinity of Fur for its Fur box. Taken together, our results demonstrate that a 120 

second functional, internal promoter controls the expression of T6SS sci1 genes and that this 121 

promoter is under a regulatory mechanism identical to the main promoter. 122 

 123 

RESULTS AND DISCUSSION 124 

Operon structure of the sci1 T6SS gene cluster. We previously reported that the 125 

promoter located upstream the tssB gene, i.e., the first gene of the EAEC sci1 T6SS gene 126 

cluster, contains operator sequences for the Ferric uptake regulator, Fur, as well as an 127 

overrepresentation of GATC motifs which are targets of the DNA adenine methylase Dam. 128 

Using in vivo and in vitro Fur binding and methylation assays, we delineated the contribution 129 

of these two regulators on the expression of the tssB gene (62). However, whether additional 130 

or internal promoters exist, and whether the entire gene cluster is subjected to this regulatory 131 

control remained undetermined. The EAEC sci1 gene cluster is a ~ 26-kb DNA fragment 132 

present on the pheU pathogenicity island (Fig. 1A; 59). Prediction of the open reading frames 133 

(ORF) within this fragment shows that it encodes 21 gene products including the 14 T6SS 134 

core components, a toxin-immunity pair, and accessory genes or of unknown function (genes 135 

tssB to tssE, see Fig. 1A). With the exception of a large intergenic sequence (162-pb between 136 
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the hcp and the clpV genes), most of the start and stop codons of contiguous genes overlap or 137 

are separated by few (< 8) nucleotides (see Fig S1 in supplemental material). This genomic 138 

organization suggests that translational coupling must occur, and that the expression of these 139 

genes must be coordinated. To test whether the sci1 gene cluster is organized as a single 140 

genetic unit, or constituted of several operons, we performed reverse-transcriptase - 141 

polymerase chain reactions (RT-PCR) using oligonucleotides designed for the amplification 142 

of each gene junction (numbered 1-21; see Fig. 1A). RT-PCR experiments were performed on 143 

purified total RNAs extracted from cells grown in Sci1-inducing medium (SIM) (Fig. 1B; 144 

upper panel). As controls, RT-PCR reactions were performed on purified genome DNA (Fig. 145 

1B, middle panel), as well as on the total RNA preparation but in absence of reverse 146 

transcriptase to test for DNA contamination (Fig. 1B, lower panel). As shown on Fig. 1B, RT-147 

PCR products with expected sized were obtained for each gene junction of the sci1 gene 148 

cluster from DNA or cDNA, but not from RNA (Fig. 1B, lanes 2-21), suggesting that the 21 149 

genes are co-transcribed. As expected, the Ec042_4523 ORF, upstream the first gene of the 150 

sci1 cluster, and in the reverse orientation compared to the tss genes, is not co-transcribed 151 

with tssB (Fig. 1B, lane 1). These results suggest that all the sci1 genes are present on a 152 

unique polycistronic mRNA, or that overlapping mRNAs are expressed from internal 153 

promoters. 154 

An additional promoter is located upstream EC042_4532. To identify potential 155 

internal promoter(s), we used an in silico approach. Analysis of the T6SS sci1 gene cluster 156 

using the BProm algorithm (Softberry; available at http://linux1.softberry.com/berry.phtml) 157 

suggested the existence of an additional promoter with a σ70 -10 element upstream the 158 

EC042_4532 gene. To test whether an internal promoter is present upstream of Ec042_4532, 159 

we used 5'-RACE assay. mRNAs were extracted from EAEC cells grown in SIM and 160 

subjected to primer extension. The putative tssB promoter, was also included in this assay. 161 
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The results showed that transcription of the tssB mRNA starts at the base A, located 73 bases 162 

upstream the ATG start codon of tssB (colored red in Fig. 2A). The tssB transcription starts 163 

are therefore compatible with the putative -10 and -35 transcription boxes identified through 164 

in silico analyses in our previous study (62) (Fig. 2A). A transcriptional start was also 165 

detected upstream the EC042_4532 gene, suggesting the existence of an active internal 166 

promoter. The position of the identified transcriptional start (base G located 117 bases 167 

upstream the ATG of EC042_4532, colored red in Fig. 2B) is compatible with the location of 168 

the -10 element predicted by the BProm algorithm (Fig. 2B). 169 

In silico sequence analyses of the EC042_4532 promoter region identify Fur and 170 

Dam sites overlapping with the -10 element. Interestingly, the BProm computer program 171 

also identified a putative Fur binding box in the EC042_4532 promoter region (hereafter 172 

called Fur-32). This putative operator sequence overlaps with the -10 of transcription (Fig. 2B 173 

and 2C). This situation is reminiscent of the main promoter, which is repressed by the Fur 174 

protein in an iron-dependent manner (62). One of the Fur boxes contained in the tssB 175 

promoter contains a Dam-dependent methylation site (Fig. 2A), and we previously reported 176 

that Fur and Dam compete at this specific site to fine tune the expression of the sci1 gene 177 

cluster (62). Strikingly, a GATC motif is also found within the putative Fur-32 box of the 178 

EC042_4532 promoter (Fig. 2C, hereafter called GATC-32). Taken together, the in silico 179 

sequence analyses raised the question whether the internal promoter is under a similar 180 

regulatory mechanism as the tssB main promoter.  181 

The P4532-lacZ translational fusion is responsive to iron limitation and Fur. To test 182 

whether the expression of the internal promoter is regulated by Fur, we engineered a low copy 183 

plasmid-borne translational fusion of a 570-bp fragment comprising the EC042_4532 184 

promoter (from -450 to +120 relative to the transcriptional +1, called hereafter P4532) to lacZ. 185 
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The β-galactosidase activity of this P4532-lacZ translational fusion was monitored in the 186 

EAEC lacZ strain or its fur isogenic mutant, in presence or absence of the iron chelator 2,2'-187 

di-pyridyl (dip). Figure 3 shows that the expression of the P4532 translational fusion increased 188 

~ 6-fold in the WT strain upon treatment with the iron chelator. Compared to the WT strain in 189 

absence of iron chelator, the activity of the translational fusion increased ~ 13-fold in the fur 190 

isogenic background. Treatment of the fur mutant strain with 2,2'-dipyridyl had no additional 191 

effect on the activity of the P4532-lacZ translational reporter fusion (data not shown). From 192 

these activities, we concluded that the expression from the P4532 promoter is repressed by the 193 

Fur transcriptional regulator in an iron-dependent manner. 194 

Fur binds to the P4532 promoter and limits access to the RNA polymerase. To test 195 

whether Fur binds the EC042_4532 promoter region in vitro, the purified E. coli Fur protein 196 

and the radiolabeled P4532 570-bp fragment were used for electrophoretic mobility shift assays 197 

(EMSA). As controls, and as previously published (62), Fur bound to the sci1 promoter, 198 

yielding two bands due to the presence of two Fur boxes, but did not retard the Fur-199 

independent sci2 promoter (Fig. 4A, lanes 8-10). Fur also shifted the P4532 fragment in 200 

presence of iron, its co-repressor (Fig. 4A, lanes 1-5; Fig. 4B). This shift was strictly 201 

dependent on metal-bound Fur, as no band retardation could be observed when the fragment 202 

and the purified regulator were incubated in presence of the metal chelator EDTA (Fig. 4A, 203 

lane 6). By contrast, control experiments showed that the σ54 enhancer binding protein NtrC 204 

did not bind the P4532 fragment (Fig. 4A, lane 7). From these data, we conclude that Fur binds 205 

to the P4532 promoter in vitro, likely to the putative Fur-32 box. 206 

Fur repression is usually caused by preventing access of the RNA polymerase (RNAP) to the 207 

promoter. We hypothesized that such a mechanism might be likely at promoter P4532 as the 208 

putative Fur-32 box overlaps with the -10 RNAP-binding element (Fig. 2B). We therefore 209 
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tested whether σ70-RNAP holoenzyme binds to the P4532 promoter and whether Fur influences 210 

σ70-RNAP binding. Fig. 4C shows that the σ70-RNAP complex binds to the P4532 promoter 211 

(Fig. 4C, lanes 1-3) and that pre-incubation of the P4532 fragment with Fur prevents binding of 212 

the σ70-RNAP, demonstrating that Fur and RNAP compete for binding on P4532 (Fig. 4C, 213 

lanes 4-6; Fig. 4D). 214 

Dam methylation at the GATC-32 site decreases RNAP binding to the P4532 215 

promoter. To gain insight on the contribution of Dam to the regulation of EC042_4532, we 216 

measured the β-galactosidase activity of the P4532-lacZ translational fusion in dam and fur-217 

dam EAEC strains. Deletion of dam did not cause a significant variation of the activity of the 218 

promoter fusion compared to its parental wild-type strain (Fig. 3). By contrast, the activity of 219 

the promoter fusion in the fur-dam strain increased ~ 16-fold compared to the wild-type strain, 220 

and ~ 1.4-fold compared to the fur mutant. These results show that Dam and Fur have 221 

additive negative effects on the regulation at the P4532 promoter, and that the contribution of 222 

Dam is masked in presence of Fur. Based on these results, we hypothesized that GATC-32 223 

methylation affects RNAP binding. A Dam-methylated P4532 fragment was subjected to 224 

EMSA with the reconstituted σ70-RNAP complex. As shown in Fig. 4C and Fig. 4D, σ70-225 

RNAP binding was diminished on the methylated P4532 fragment.  226 

Fur-Dam competition at the P4532 promoter. The observation that the Dam effect 227 

was masked by Fur in vivo raised the idea that, similarly to the Psci1 situation, Fur binding to 228 

the Fur-32 box prevents Dam-methylation of the GATC-32 site. To test this hypothesis, in 229 

vitro and in vivo assays were conducted. 230 

Fur binding at the P4532 promoter prevents GATC-32 methylation in vitro. To test the 231 

impact of Fur binding on GATC-32 methylation in vitro, we added purified Dam methylase to 232 

radiolabeled P4532 fragments pre-incubated or not with purified Fur protein. The P4532 233 
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fragments were then used for enzymatic digestion using enzymes that cleave GATC motifs 234 

(Fig S2 in supplemental material). We used the advantage that the GATC-32 site is part of a 235 

larger palindromic sequence, TgatcA, which is the target for BclI, a restriction enzyme that is 236 

sensitive to Dam methylation (Fig S2 in supplemental material). In addition to GATC-32, the 237 

P4532 fragment contains a GATC site at position 149 (GATC149) that does not overlap with a 238 

Fur box (Fig S2 in supplemental material). Fig. 5A shows that, as expected, incubation with 239 

the Dam methylase caused methylation of the GATC sites as P4532 is cleaved in three 240 

fragments when incubated with DpnI, an enzyme that specifically recognizes methylated 241 

GATC motifs. In agreement with this result, P4532 was resistant to MboI and BclI, two 242 

enzymes that are sensitive to GATC adenine methylation (Fig. 5A, middle panel). When the 243 

P4532 fragment was pre-incubated with Fur, only the GATC149 site was digested by DpnI. By 244 

contrast, only the GATC-32 site was digested by MboI or BclI (Fig. 5A, right panel). These 245 

experiments demonstrate that in presence of Fur, GATC149 is methylated whereas GATC-32 246 

is not, suggesting that Fur protects GATC-32 methylation by steric occlusion.  247 

Fur binding at the P4532 promoter prevents GATC-32 methylation in vivo. The methylation 248 

status of the P4532 GATC sites was then tested in vivo. The pGE573 plasmid bearing the P4532-249 

lacZ fusion was extracted from various genetic backgrounds, the EcoR1-BamH1 fragment 250 

comprising the P4532 promoter was purified and the methylation state of GATC-32 was 251 

assessed by restriction. In the WT strain grown in LB medium, the MboI and BclI enzymes 252 

cleaved GATC-32 (Fig. 5B, left panel), revealing that this site is un-methylated. The absence 253 

of methylation is likely due to the presence of Fur bound to the Fur box overlapping with 254 

GATC-32 as GATC-32 was methylated in the fur isogenic background (Fig. 5B, right panel) 255 

or when WT cells were grown in presence of the 2,2'-dipyridyl iron chelator (Fig. 5B, third 256 

panel from left). 257 
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Taken together, the results of the in vitro and in vivo Dam methylation assays 258 

demonstrate that Fur binding on the Fur-32 box prevents access of the Dam methylase to the 259 

GATC-32 site in iron rich conditions. By contrast, Fur repression is relieved in iron limiting 260 

conditions and the GATC-32 site is then methylated.  261 

GATC-32 Dam methylation decreases the affinity of Fur to the P4532 promoter. The 262 

observation that the GATC-32 site is methylated once Fur repression is relieved raised the 263 

question whether methylation of the GATC-32 motif interferes with Fur binding. We 264 

therefore performed mobility shift assays with Fur using the P4532 fragment, methylated by 265 

Dam in vitro. Fig. 6 shows that methylation of GATC-32 caused a significant decrease of 266 

affinity of Fur for the P4532 promoter. 267 

 268 

Concluding remarks 269 

In this study, we report the presence of an internal promoter within the sci1 T6SS gene 270 

cluster of enteroaggregative E. coli. The presence of internal promoters that serve as 271 

transcriptional re-starts or that are necessary to ensure proper stoichiometric production is 272 

common in large gene clusters. It has been well documented for gene clusters encoding 273 

amino-acid synthesis pathways such as histidine, tryptophan, threonine, or branched chain 274 

amino-acids (63-67). More recently, an internal promoter within the gene cluster encoding the 275 

ESX-3 type VII secretion system has been identified in Mycobacterium smegmatis (68). Here, 276 

we show that this internal promoter, P4532, is under the control of a regulatory mechanism 277 

similar to that controlling the main promoter (Fig. 7): expression from the P4532 promoter is 278 

repressed by the Fur protein, that binds to a Fur box overlapping with the -10 transcriptional 279 

element. In addition, a GATC site, GATC-32, which is a target of the Dam methylase, 280 
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overlaps with the Fur binding box. In iron rich conditions, Fur binding to the promoter 281 

prevents methylation of this motif. However, during iron starvation, Fur removal allows 282 

methylation of the GATC-32 site and the methylation decreases the affinity of Fur for its 283 

binding box. Therefore Fur controls the switch between ON and OFF expression, whereas 284 

Dam methylation stabilizes the ON phase (Fig. 7). This mechanism is therefore similar to that 285 

previously reported for the sci1 main promoter (62). However, differences can be noticed. 286 

First, the level of methylation and the activity of the Dam methylase might be slightly 287 

different on the main and the internal promoters, as the sequences flanking the GATC motifs 288 

have different AT content. Indeed, sequences flanking Dam sites have been previously shown 289 

to modulate the catalytic activity or the processivity of Dam (69). Second, a ∼13-fold 290 

derepression of the internal promoter is observed in absence of Fur, while a >25-fold 291 

derepression was observed for the main promoter (62). These results are in agreement with 292 

the lower consensus of the Fur-32 box compared to the Fur box overlapping with the -10 of 293 

the main promoter (Fig. 2C), and with the potential cooperativity of the two Fur-binding 294 

boxes at the main promoter (62). 295 

The role of the Dam methylase in transcriptional gene regulation is well documented. 296 

In addition to its role in mismatch repair and replication initiation, Dam is involved in 297 

epigenetic control of the expression of many genes including genes encoding type III 298 

secretion systems, adhesins, fimbriae, or involved in lipopolysaccharide modifications (for 299 

reviews, see 70-72). GATC sites can be found in intergenic regions, and in some cases these 300 

sites overlap with transcriptional elements such as the -10 (73). Hence Dam-dependent 301 

methylation may directly impact transcription. However, in most cases, GATC sites found in 302 

promoter regions do not overlap with transcriptional elements, but rather with regulator 303 

binding boxes. In these cases, the methylation status may control binding of the regulator, and 304 

reciprocally, regulator binding may prevent methylation of certain GATC sites. Several 305 
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studies have reported competition between Dam-dependent methylation and regulator fixation, 306 

such as the OxyR repressor at the agn43 promoter, or the Lrp repressor at the pap operon 307 

promoter (74-76). In general, competition between methylation and regulator binding results 308 

in the transition between OFF and ON expression phases (72). 309 

In conclusion, the sci1 gene cluster is subjected to Fur/Dam regulation, and a 310 

transcriptional re-start occurs after the eighth gene of the operon. Further experiments will be 311 

necessary to define whether this re-start is necessary because transcription of the mRNA from 312 

the initial promoter stops before the last gene, or because the distal part of the operon requires 313 

additional copies of mRNA for proper stoichiometry. 314 

 315 

MATERIAL AND METHODS 316 

Bacterial strains, plasmids, medium, and growth conditions. E. coli K-12 strain DH5a was used for 317 
all cloning procedures. The EAEC strains used in this study are all derivatives of 17-2 and have been 318 
previously described (62). The plasmid-borne P4532-lacZ fusion was engineered by ligating a blunt-end 319 
570-bp fragment encompassing the 4532 promoter (corresponding to bases –450 to +120, respective to 320 
the EC042_4532 transcriptional start site [nucleotides 4892656-4893121], amplified from EAEC 17-2 321 
chromosomal DNA using oligonucleotides 5'-CGCACCATGATCGTCTCTGTATCGC and 5'-322 
CTGAAACGAACTGCTCATGGCTCTCTC) into the SmaI-linearized pGE573, a vector that carries a 323 
promoter-less lacZ gene (77). In this construct, the lacZ gene is under the control of the P4532 promoter. 324 
Proper insertion, orientation and sequence of the fragment into the pGE-P4532 plasmid were verified by 325 
restriction, PCR and DNA sequencing (MWG). E. coli cells were routinely grown in Luria Broth (LB) 326 
or Sci1-inducing medium (SIM; M9 minimal medium supplemented with glycerol 0.25 %, vitamin B1 327 
200 µg.mL−1, casaminoacids 40 µg.mL−1, MgCl2 2 mM, CaCl2 0.1 mM, and LB (10% v/v); 62) 328 
supplemented with antibiotics when necessary (kanamycin 50 µg.mL-1, ampicillin 100 µg.mL-1 for K-329 
12 or 200 µg.mL-1 for EAEC). 330 

RNA purification. EAEC total RNAs have been extracted using the PureYieldTM RNA midiprep 331 
system (Promega) from 8×109 cells grown in SIM and harvested in exponential growth phase (optical 332 
density at λ=600nm [OD600] ~ 0.8). RNAs were eluted with 1 mL of water, cleared with DNaseI 333 
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(AmbionTM), and precipitated overnight at – 80°C by ammonium sulfate/ethanol procedures. The RNA  334 
pellet was washed and resuspended in 45 µL of nuclease-free water. RNA quality and integrity were 335 

tested on agarose gel, and by the absorbance ratio at λ=260/280 nm. The absence of DNA 336 
contamination was further tested by PCR using 35 cycles of amplification. Quantifications gave an 337 
average RNA concentration of 70 µg.mL-1. Total RNAs were then subjected to RT-PCR (Access RT-338 
PCR, Promega) or transcriptional +1 mapping (5’RACE, Invitrogen). 339 

Reverse transcription – PCR. The Reverse transcription (RT) and PCR have been performed with 340 
the one-tube procedure, using the Access RT-PCR system (Promega), with 200 ng of total RNA and 341 
oligonucleotides allowing amplification of 550-750-bp regions overlapping the two contiguous genes 342 
(see Fig. 1A; primer sequences available upon request), following the supplier's guidelines. Briefly, 343 
both reverse transcriptase and Tfl Taq polymerase were added in each tube. The reverse transcription 344 
was carried out for 45 min at 45°C, and, after inactivation of the reverse transcriptase at 94°C for 5 345 
min, a 30-cycle PCR was performed (denaturation at 94°C for 30 sec; annealing at 55°C for 40 sec.; 346 
and amplification at 68°C for 50 sec.). As negative controls to test for DNA contamination, RT-PCR 347 
were also performed in absence of Reverse Transcriptase. As positive controls, the regions 348 
overlapping the two contiguous genes have been amplified from 30 ng of genomic DNA.  349 

5’-RACE assay. Total RNAs (80 µg.mL-1) were subjected to transcriptional +1 mapping using the 350 
5’RACE system (Invitrogen).  351 

β-galactosidase assays. β-Galactosidase activity was measured by the method of Miller (78) on whole 352 
cells harvested at OD600 of 0.8. Reported values represent the average of technical triplicates from 353 
three independent biological cultures, and standard deviation are shown on the graphs.  354 

Protein purification. The Fur and NtrC proteins have been purified as described previously (62, 79). 355 
The σ70-saturated RNAP holoenzyme has been purchased from USB Corp. The Dam methylase and 356 
restriction enzymes have been obtained from New England Biolabs and have been used as 357 
recommended by the manufacturer. 358 

Electrophoretic Mobility gel Shift Assay (EMSA) and Dam methylation assays. DNA 359 
radiolabeling, EMSA, Fur/RNAP competition EMSA, and in vivo and in vitro Dam methylation assays 360 
have been performed as previously described (62). 361 

 362 

 363 
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LEGEND TO FIGURES 596 

FIG 1 Operon structure of the EAEC sci1 T6SS gene cluster. (A) Schematic organization of the 597 
EAEC sci1 T6SS gene cluster (EC042_4524 to EC042_4545). Genes encoding T6SS core components 598 
are indicated in grey. Accessory genes or of unknown function are represented in white. The 599 
fragments corresponding to gene junctions and amplified in the RT-PCR experiments are indicated 600 
below (1, 692-bp; 2, 672-bp; 3, 550-bp; 4, 618-pb; 5, 586-bp; 6, 643-bp; 7, 748-bp; 8, 629-bp; 9, 575-601 
bp; 10, 654-bp; 11, 581-bp; 12, 768-bp; 13, 762-bp; 14, 459-bp; 15, 600-bp; 16, 673-bp; 17, 576-bp; 602 
18, 720-bp; 19, 552-bp; 20, 591-bp; 21, 678-bp). (B) Operon structure of the EAEC sci1 T6SS gene 603 
cluster. Agarose gel analyses of the indicated gene junctions (numbered 1-22, see panel A) amplified 604 
by PCR from cDNA (upper panel), genomic DNA (middle panel; positive control) and total RNA 605 
(lower panel, negative control). The presence of PCR fragment in the cDNA gels demonstrates co-606 
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transcription of the genes located in 5' and 3' of the amplified region. Molecular weight markers (MW, 607 
in kb) are indicated on the left. White dashed lines separate different gels combined to a single image. 608 

FIG 2 Regulatory elements of the sci1 and 4532 promoters. Nucleotide sequences of the sci1 (A) and 609 
EC042_4532 (B) promoters highlighting overlaps between the transcriptional elements, Fur binding 610 
boxes and Dam methylation motifs. The +1 transcriptional site, identified by 5'-RACE are indicated in 611 
bold red letters. GATC Dam methylation sites are indicated in bold blue letters. The -10 elements are 612 
indicated in green. The underlined sequences indicate Fur binding boxes (italics) and translational start 613 
codons. (C) Sequence alignment of the fur1 (sci1 promoter) and fur-32 (EC042_4532 promoter) boxes 614 
with the E. coli Fur box consensus sequence. Identical bases are framed in grey. The -10 elements 615 
(green letters) and GATC motifs (bold blue letters) are indicated.  616 

FIG 3 The 4532 promoter is under the control of iron levels, Fur and Dam. β-galactosidase activity (in 617 
Miller units) of a promoterless lacZ fusion (white bars) and of the P4532-lacZ reporter fusion (blue bars) 618 
at OD600=0.8 in the WT EAEC 17-2 strain, after a 30-min treatment with 2,2’-dipyridyl (+dip; 100 µM) 619 
or in the isogenic fur, dam and fur-dam mutants. 620 

FIG 4 Fur binds to the 4532 promoter and prevents access to the RNA polymerase in vitro. (A) 621 
Electrophoretic mobility shift assay of the EC042_4532 promoter (P4532) with the indicated 622 
concentration of Fur in presence of FeCl3 or in presence of EDTA (lane 6) or using purified NtrC 623 
transcriptional activator (lane 7). Controls include Fur shift assays of the Fur-dependent sci1 promoter 624 
(lanes 8 and 9) or of the Fur-independent sci2 promoter (lane 10). DNA-Fur complexes are indicated 625 
by stars. The densitometry analysis of Fur binding on the P4532 fragment (represented as free P4532 626 
DNA as a function of Fur concentration) is shown in panel (B). (C) Electrophoretic mobility shift 627 
assay of the unmethylated (P4532, lanes 1-6) or methylated (me-P4532, lanes 7-9) EC042_4532 promoter 628 
with the indicated concentration of σ70-RNAP (in units) alone (lanes 1-3) or in presence of 20 nM of 629 
Fur (lanes 4-6). DNA-Fur and DNA-RNAP complexes are indicated by the star and circle respectively. 630 
The densitometry analysis of RNAP binding on the unmethylated (blue curve), methylated (green 631 
curve) or Fur-bound unmethylated (red curve) P4532 fragment (represented as RNAP-bound DNA as a 632 
function of RNAP concentration) is shown in panel (D).  633 

FIG 5 Fur protects GATC-32 from methylation in vitro and in vivo. (A) A radiolabeled PCR product 634 
corresponding to the 570-bp P4532 fragment was digested by the restriction enzymes indicated on top. 635 
Left panel, untreated PCR product; middle panel, PCR product treated with the Dam methylase; right 636 
panel, PCR product incubated with purified Fur (20 nM) prior to Dam methylation. Molecular weight 637 
markers (MW, in bp) are indicated on the left. The sizes of the digestion products (in bp) are indicated 638 
on the right. See Suppl. Fig. S2 for positions of restriction sites and sizes of expected DNA fragments. 639 
(B) The P4532 promoters isolated from pGE573 vectors carrying the P4532-lacZ fusion purified from the 640 
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EAEC wild-type strain (WT, left panel) or its isogenic dam (second panel from left) or fur (right panel) 641 
mutant strains, or from the WT strain treated with 2,2’-dipyridyl (third panel from left) were digested 642 
by the restriction enzymes indicated on top. Molecular weight markers (MW, in bp) are indicated on 643 
the left. The sizes of the digestion products (in bp) are indicated on the right. The white dashed lines in 644 
left panel indicate reorganization of the lines from the same gel. See Suppl. Fig. S2 for positions of 645 
restriction sites and sizes of expected DNA fragments.  646 

FIG 6 GATC-32 methylation influences Fur binding on P4532. (A) Electrophoretic mobility shift assay 647 
of the unmethylated (P4532) or methylated (me-P4532) P4532 fragment with the indicated concentration of 648 
purified Fur. The densitometry analysis of Fur binding on the unmethylated (blue curve) or methylated 649 
(green curve) P4532 fragment (represented as free P4532 DNA as a function of Fur concentration) is 650 
shown in panel (B). 651 

FIG 7 Schematic representation of sci1 gene cluster regulation. (A) The sci1 T6SS gene cluster is 652 
represented on top with the location of the main (PSci1) and internal (P4532) promoters. Zoom-in genetic 653 
architectures of these promoters are shown at bottom (+1, transcriptional start; -10 and -35 654 
transcriptional elements [blue]; Fur binding box [orange]; Dam methylation GATC site [green]). (B) 655 
Model of regulation of sci1 main and internal promoters by Fur and Dam. In iron-replete conditions 656 
(left), a Fur dimer (orange hexagons) complexed to iron (black dots) is bound to the Fur box, 657 
preventing methylation of the GATC site, and access to the RNA polymerase. Expression from the 658 
promoter is repressed (OFF state). In iron-limiting conditions (right), Fur is released from the 659 
promoter, allowing GATC methylation by Dam and binding of the RNA polymerase. Expression from 660 
the promoter is turned on (ON state). 661 
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