M. Arumugam, MetaHIT Consortium, Enterotypes of the human gut microbiome, Nature, vol.473, pp.174-180, 2011.

W. R. Wikoff, Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.3698-3703, 2009.

S. Rakoff-nahoum, K. R. Foster, and L. E. Comstock, The evolution of cooperation within the gut microbiota, Nature, vol.533, pp.255-259, 2016.

P. Evenepoel, R. Poesen, and B. Meijers, The gut-kidney axis, Pediatr. Nephrol, vol.32, 2005.

R. Masereeuw, The kidney and uremic toxin removal: Glomerulus or tubule?, Semin. Nephrol, vol.34, pp.191-208, 2014.

W. R. Wikoff, M. A. Nagle, V. L. Kouznetsova, I. F. Tsigelny, and S. K. Nigam, Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1), J. Proteome Res, vol.10, pp.2842-2851, 2011.

S. K. Nigam and K. T. Bush, Uraemic syndrome of chronic kidney disease: Altered remote sensing and signalling, Nat. Rev. Nephrol, vol.15, pp.301-316, 2019.

R. Poesen, The influence of CKD on colonic microbial metabolism, J. Am. Soc. Nephrol, vol.27, pp.1389-1399, 2016.

N. D. Vaziri, Chronic kidney disease alters intestinal microbial flora, Kidney Int, vol.83, pp.308-315, 2013.

F. C. Barreto, Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients, European Uremic Toxin Work Group (EUTox), vol.4, pp.1551-1558, 2009.

B. K. Meijers, p-Cresol and cardiovascular risk in mild-to-moderate kidney disease, Clin. J. Am. Soc. Nephrol, vol.5, pp.1182-1189, 2010.

K. Wanchai, Probiotic Lactobacillus paracasei HII01 protects rats against obeseinsulin resistance-induced kidney injury and impaired renal organic anion transporter 3 function, Clin. Sci. (Lond.), vol.132, pp.1545-1563, 2018.

J. Lowenstein and J. J. Grantham, The rebirth of interest in renal tubular function, Am. J. Physiol. Renal Physiol, vol.310, pp.1351-1355, 2016.

S. Y. Ahn and S. K. Nigam, Toward a systems level understanding of organic anion and other multispecific drug transporters: A remote sensing and signaling hypothesis, Mol. Pharmacol, vol.76, pp.481-490, 2009.

A. Efeyan, W. C. Comb, and D. M. Sabatini, Nutrient-sensing mechanisms and pathways, Nature, vol.517, pp.302-310, 2015.

W. Wu, A. V. Dnyanmote, and S. K. Nigam, Remote communication through solute carriers and ATP binding cassette drug transporter pathways: An update on the remote sensing and signaling hypothesis, Mol. Pharmacol, vol.79, pp.795-805, 2011.

S. K. Nigam, The SLC22 transporter family: A paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease, Annu. Rev. Pharmacol. Toxicol, vol.58, pp.663-687, 2018.

J. Jansen, J. Jankowski, P. R. Gajjala, J. F. Wetzels, and R. Masereeuw, Disposition and clinical implications of protein-bound uremic toxins, Clin. Sci. (Lond.), vol.131, pp.1631-1647, 2017.

H. , The SLC22 family with transporters of organic cations, anions and zwitterions, Mol. Aspects Med, vol.34, pp.413-435, 2013.

W. Wu, K. T. Bush, and S. K. Nigam, Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes, Sci. Rep, vol.7, p.4939, 2017.

R. Poesen, The influence of dietary protein intake on mammalian tryptophan and phenolic metabolites, PLoS One, vol.10, p.140820, 2015.

J. Jansen, A morphological and functional comparison of proximal tubule cell lines established from human urine and kidney tissue, Exp. Cell Res, vol.323, pp.87-99, 2014.

F. Oliveira-arcolino, Human urine as a noninvasive source of kidney cells, Stem Cells Int, p.362562, 2015.

D. Mafra, Dietary components that may influence the disturbed gut microbiota in chronic kidney disease, Nutrients, vol.11, p.496, 2019.

Y. Lu, T. Nakanishi, A. Hosomi, H. Komori, and I. Tamai, In-vitro evidence of enhanced breast cancer resistance protein-mediated intestinal urate secretion by uremic toxins in Caco-2 cells, J. Pharm. Pharmacol, vol.67, pp.170-177, 2015.

T. and S. Machado, Indoxyl sulfate upregulates liver P-glycoprotein expression and activity through aryl hydrocarbon receptor signaling, J. Am. Soc. Nephrol, vol.29, pp.906-918, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02060562

T. T. Nieskens, A human renal proximal tubule cell line with stable organic anion transporter 1 and 3 expression predictive for antiviral-induced toxicity, AAPS J, vol.18, pp.465-475, 2016.

C. Y. Sun, Protein-bound uremic toxins induce tissue remodeling by targeting the EGF receptor, J. Am. Soc. Nephrol, vol.26, pp.281-290, 2015.

P. Caetano-pinto, Cetuximab prevents methotrexate-induced cytotoxicity in vitro through epidermal growth factor dependent regulation of renal drug transporters, Mol. Pharm, vol.14, pp.2147-2157, 2017.

J. Han, miR-223 reverses the resistance of EGFR-TKIs through IGF1R/PI3K/Akt signaling pathway, Int. J. Oncol, vol.48, pp.1855-1867, 2016.

J. Ogando, Notch-regulated miR-223 targets the aryl hydrocarbon receptor pathway and increases cytokine production in macrophages from rheumatoid arthritis patients, Sci. Rep, vol.6, p.20223, 2016.

J. Jansen, Human proximal tubule epithelial cells cultured on hollow fibers: Living membranes that actively transport organic cations, Sci. Rep, vol.5, p.16702, 2015.

J. Jansen, Bioengineered kidney tubules efficiently excrete uremic toxins, Sci. Rep, vol.6, p.26715, 2016.

H. A. Mutsaers, Uremic toxins inhibit transport by breast cancer resistance protein and multidrug resistance protein 4 at clinically relevant concentrations, PLoS One, vol.6, p.18438, 2011.

S. Lindsey and E. T. Papoutsakis, The evolving role of the aryl hydrocarbon receptor (AHR) in the normophysiology of hematopoiesis, Stem Cell Rev, vol.8, pp.1223-1235, 2012.

M. Sallée, The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: A new concept to understand cardiovascular complications of chronic kidney disease, Toxins (Basel), vol.6, pp.934-949, 2014.

L. Dou, The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells, J. Thromb. Haemost, vol.5, pp.1302-1308, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01610441

Z. Tan, M. Huang, A. Puga, and Y. Xia, A critical role for MAP kinases in the control of Ah receptor complex activity, Toxicol. Sci, vol.82, pp.80-87, 2004.

K. Y. Chang, Epidermal growth factor-activated aryl hydrocarbon receptor nuclear translocator/HIF-1beta signal pathway up-regulates cyclooxygenase-2 gene expression associated with squamous cell carcinoma, J. Biol. Chem, vol.284, pp.9908-9916, 2009.

N. Wong and X. Wang, miRDB: An online resource for microRNA target prediction and functional annotations, Nucleic Acids Res, vol.43, pp.146-152, 2015.

E. Sato, Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease, Sci. Rep, vol.6, p.36618, 2016.

H. Shimizu, M. Yisireyili, Y. Higashiyama, F. Nishijima, and T. Niwa, Indoxyl sulfate upregulates renal expression of ICAM-1 via production of ROS and activation of NF-?B and p53 in proximal tubular cells, Life Sci, vol.92, pp.143-148, 2013.

K. Yang, Indoxyl sulfate induces oxidative stress and hypertrophy in cardiomyocytes by inhibiting the AMPK/UCP2 signaling pathway, Toxicol. Lett, vol.234, pp.110-119, 2015.

M. J. Morgan and Z. G. Liu, Crosstalk of reactive oxygen species and NF-?B signaling, Cell Res, vol.21, pp.103-115, 2011.

Y. Son, S. Kim, H. T. Chung, and H. O. Pae, Reactive oxygen species in the activation of MAP kinases, Methods Enzymol, vol.528, pp.27-48, 2013.

S. K. Nigam, The organic anion transporter (OAT) family: A systems biology perspective, Physiol. Rev, vol.95, pp.83-123, 2015.

J. S. Brito, Aryl hydrocarbon receptor activation in chronic kidney disease: Role of uremic toxins, Nephron, vol.137, pp.1-7, 2017.

H. D. Humes, D. Buffington, A. J. Westover, S. Roy, and W. H. Fissell, The bioartificial kidney: Current status and future promise, Pediatr. Nephrol, vol.29, pp.343-351, 2014.

T. Deguchi, Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney, Kidney Int, vol.61, pp.1760-1768, 2002.

T. Deguchi, Characterization of uremic toxin transport by organic anion transporters in the kidney, Kidney Int, vol.65, pp.162-174, 2004.

H. Saito, Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury: Pharmacological and toxicological implications, Pharmacol. Ther, vol.125, pp.79-91, 2010.

Y. Adelibieke, Indoxyl sulfate induces IL-6 expression in vascular endothelial and smooth muscle cells through OAT3-mediated uptake and activation of AhR/NF-?B pathway, Nephron Exp. Nephrol, vol.128, pp.1-8, 2014.

J. B. Koenderink, Electrophysiological analysis of the mutated Na,K-ATPase cation binding pocket, J. Biol. Chem, vol.278, pp.51213-51222, 2003.

M. I. Oerlemans, Inhibition of miR-223 reduces inflammation but not adverse cardiac remodelling after myocardial ischemia-reperfusion in vivo, Non-Coding RNA Investig, vol.2, p.15, 2018.

J. C. Brennan, Development of species-specific Ah receptor-responsive third generation CALUX cell lines with enhanced responsiveness and improved detection limits, Environ. Sci. Technol, vol.49, pp.11903-11912, 2015.

B. Opdebeeck, Indoxyl sulfate and p-cresyl sulfate promote vascular calcification and associate with glucose intolerance, J. Am. Soc. Nephrol, vol.30, pp.751-766, 2019.

Z. Y. Oo, The performance of primary human renal cells in hollow fiber bioreactors for bioartificial kidneys, Biomaterials, vol.32, pp.8806-8815, 2011.

J. Krützfeldt, Silencing of microRNAs in vivo with 'antagomirs', Nature, vol.438, pp.685-689, 2005.