M. Baccaro, A. K. Undas, J. De-vriendt, . Van-den, J. H. Berg et al., , 2018.

, Ageing, dissolution and biogenic formation of nanoparticles: how do these factors affect the uptake 414 kinetics of silver nanoparticles in earthworms?, Environ. Sci. Nano, vol.5, pp.1107-1116


F. Bernard, F. Brulle, F. Douay, S. Lemière, S. Demuynck et al., Metallic trace element 417 body burdens and gene expression analysis of biomarker candidates in Eisenia fetida, using an 418 "exposure/depuration" experimental scheme with field soils, Ecotoxicol. Environ. Saf, vol.73, pp.1034-1045, 2010.


J. Bourdineaud, A. ?tambuk, M. ?rut, S. Radi?-brkanac, D. Ivankovi? et al., , p.421

Z. Dragun, N. Ba?i?, and G. I. Klobu?ar, Gold and silver nanoparticles effects to the earthworm 422, 2019.

, Eisenia fetida -the importance of tissue over soil concentrations, Drug Chem. Toxicol, pp.1-18


F. Brulle, C. Cocquerelle, A. N. Wamalah, A. J. Morgan, P. Kille et al., 425 cDNA cloning and expression analysis of Eisenia fetida (Annelida: Oligochaeta) phytochelatin synthase 426 under cadmium exposure, Ecotoxicol. Environ. Saf, vol.71, pp.47-55, 2008.


G. Carbonell, J. Pro, N. Gómez, M. M. Babín, C. Fernández et al., Sewage sludge 429 applied to agricultural soil: Ecotoxicological effects on representative soil organisms, 2009.

. Environ and . Saf, , vol.72, pp.1309-1319

P. Chaurand, W. Liu, D. Borschneck, C. Levard, M. Auffan et al., , p.432

J. Perrin and J. , Multi-scale X-ray computed tomography to detect and localize metal-based 433 nanomaterials in lung tissues of in vivo exposed mice, Sci. Rep, vol.8, pp.1-11, 2018.


H. Chhipa, Applications of nanotechnology in agriculture, Methods Microbiol, pp.115-142, 2019.

P. Courtois, A. Rorat, S. Lemiere, R. Guyoneaud, E. Attard et al., , 2019.

, Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage 438 sludge: A review of effects on microorganisms, plants and animals, Environ. Pollut, vol.253, pp.578-598


C. Coutris, T. Hertel-aas, E. Lapied, E. J. Joner, and D. H. Oughton, Bioavailability of cobalt and silver 441 nanoparticles to the earthworm Eisenia fetida, Nanotoxicology, vol.6, pp.186-195, 2011.


C. Silvana, P. García-velasco, N. Urionabarrenetxea, E. Elena, S. M. Bilbao et al., , p.444

M. Soto, Responses to silver nanoparticles and silver nitrate in a battery of biomarkers measured 445 in coelomocytes and in target tissues of Eisenia fetida earthworms, Ecotoxicol. Environ. Saf, vol.141, pp.57-446, 2017.

S. K. Davidson, R. Powell, and S. James, A global survey of the bacteria within earthworm nephridia, 2013.

, Phylogenet. Evol, vol.67, pp.188-200

S. Demuynck, F. Grumiaux, V. Mottier, D. Schikorski, S. Lemière et al., Metallothionein 450 response following cadmium exposure in the oligochaete Eisenia fetida, Comp. Biochem. Physiol, 2006.

, Toxicol. Pharmacol. CBP, vol.144, pp.34-46

M. Diez-ortiz, E. Lahive, S. George, A. Ter-schure, C. A. Van-gestel et al., , p.453

D. J. Spurgeon, Short-term soil bioassays may not reveal the full toxicity potential for 454 nanomaterials; bioavailability and toxicity of silver ions (AgNO3) and silver nanoparticles to 455 earthworm Eisenia fetida in long-term aged soils, Environ. Pollut, vol.203, pp.191-198, 2015.


M. Diez-ortiz, E. Lahive, P. Kille, K. Powell, A. J. Morgan et al., , p.458

J. F. Svendsen, C. Spurgeon, and D. J. , Uptake routes and toxicokinetics of silver nanoparticles 459 and silver ions in the earthworm Lumbricus rubellus, Environ. Toxicol. Chem, vol.34, pp.2263-2270, 2015.


E. Fischer, The myelo-erythroid nature of the chloragogenous-like tissues of the annelids, 1993.

, Biochem. Physiol. A Physiol, vol.106, pp.449-453

N. Garcia-velasco, M. Gandariasbeitia, A. Irizar, and M. Soto, Uptake route and resulting toxicity of silver 464 nanoparticles in Eisenia fetida earthworm exposed through Standard OECD Tests, Ecotoxicology, vol.25, pp.465-1543, 2016.

N. Garcia-velasco, A. Peña-cearra, E. Bilbao, B. Zaldibar, and M. Soto, Integrative assessment of the 467 effects produced by Ag nanoparticles at different levels of biological complexity in Eisenia fetida 468 maintained in two standard soils (OECD and LUFA 2.3), Chemosphere, vol.181, pp.747-758, 2017.


S. I. Gomes, D. Hansen, J. J. Scott-fordsmand, and M. J. Amorim, Effects of silver nanoparticles to soil 471 invertebrates: Oxidative stress biomarkers in Eisenia fetida, Environ. Pollut, vol.199, pp.49-55, 2015.


S. S. Hamed, E. Kauschke, and E. L. Cooper, Cytochemical Properties of Earthworm Coelomocytes Enriched 474 by Percoll, A New Model for Analyzing Antimicrobial Peptides with Biomedical Applications., 475 NATO Science Series, 2002.

Y. Hayashi, L. Heckmann, V. Simonsen, and J. J. Scott-fordsmand, Time-course profiling of molecular 477 stress responses to silver nanoparticles in the earthworm Eisenia fetida, Ecotoxicol. Environ. Saf, vol.98, pp.219-226, 2013.

L. Heckmann, M. B. Hovgaard, D. S. Sutherland, H. Autrup, F. Besenbacher et al., , 2011.

, Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida, 481 Ecotoxicology, vol.20, pp.226-233

J. Homa, A. Rorat, J. Kruk, C. Cocquerelle, B. Plytycz et al., Dermal exposure of Eisenia 483 andrei earthworms: Effects of heavy metals on metallothionein and phytochelatin synthase gene 484 expressions in coelomocytes, Environ. Toxicol. Chem, vol.34, pp.1397-1404, 2015.

R. Kaegi, A. Voegelin, C. Ort, B. Sinnet, B. Thalmann et al., , p.486

E. , Fate and transformation of silver nanoparticles in urban wastewater systems, Water Res, vol.47, pp.3866-3877, 2013.

R. Kaegi, A. Voegelin, B. Sinnet, S. Zuleeg, H. Hagendorfer et al., , p.489, 2011.

, Metallic Silver Nanoparticles in a Pilot Wastewater Treatment Plant, Environ. Sci. Technol, vol.45, pp.3902-490

M. R. Khan and T. F. Rizvi, Application of Nanofertilizer and Nanopesticides for, p.492, 2017.

, Soil Systems, Soil Biology, pp.405-427


C. L. Klein, B. Stahlmecke, J. Romazanov, T. A. Kuhlbusch, E. Van-doren et al., , p.496

P. Wick, H. Krug, G. Locoro, K. Hund-rinke, W. Kördel et al., , p.497

T. Linsinger, B. M. Gawlik, and S. Comero, Institute for Health and Consumer Protection, European, vol.498

, Joint Research Centre, Institute for Environment and Sustainability, Commission, p.499

, NM-Series of representative manufactured 500 nanomaterials: NM-300 silver characterisation, stability, Reference Materials and Measurements, p.501, 2011.

. Luxembourg,

E. Lapied, E. Moudilou, J. Exbrayat, D. H. Oughton, and E. J. Joner, Silver nanoparticle exposure causes 503 apoptotic response in the earthworm Lumbricus terrestris (Oligochaeta), Nanomed, vol.5, pp.975-984, 2010.


C. Levard, E. M. Hotze, G. V. Lowry, and G. E. Brown, Environmental Transformations of Silver 506 Nanoparticles: Impact on Stability and Toxicity, Environ. Sci. Technol, vol.46, pp.6900-6914, 2012.


R. Ma, C. Levard, J. D. Judy, J. M. Unrine, M. Durenkamp et al., Fate 509 of Zinc Oxide and Silver Nanoparticles in a Pilot Wastewater Treatment Plant, p.510, 2014.

, Biosolids. Environ. Sci. Technol, vol.48, pp.104-112

E. Mcgillicuddy, I. Murray, S. Kavanagh, L. Morrison, A. Fogarty et al., , p.512

M. Rowan, N. Morris, and D. , Silver nanoparticles in the environment: Sources, detection and 513 ecotoxicology, Sci. Total Environ, vol.575, pp.231-246, 2017.

L. A. Mendes, V. L. Maria, J. J. Scott-fordsmand, and M. J. Amorim, Ag Nanoparticles (Ag NM300K) in 515 the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida 516 (Collembola), Int. J. Environ. Res. Public. Health, vol.12, pp.12530-12542, 2015.


A. J. Morgan, S. R. Stürzenbaum, C. Winters, G. W. Grime, N. A. Aziz et al., Differential 519 metallothionein expression in earthworm (Lumbricus rubellus) tissues, Ecotoxicol. Environ. Saf, vol.57, pp.11-19, 2004.

J. E. Morgan and A. J. Morgan, Seasonal changes in the tissue-metal (Cd, Zn and Pb) concentrations in two 522 ecophysiologically dissimilar earthworm species: pollution-monitoring implications, Environ. Pollut, vol.523, pp.1-7, 1993.

G. F. Nordberg, Modulation of metal toxicity by metallothionein, Biol. Trace Elem. Res, vol.21, 1989.

M. Novo, E. Lahive, M. Díez-ortiz, M. Matzke, A. J. Morgan et al., , 2015.

, Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in 528 the soil sentinel Eisenia fetida, Environ. Pollut, vol.205, pp.385-393


, Ligne directrice N°207, Ligne directrice de l'OCDE pour les 531 essais de produits chimiques, OCDE, 1984.

P. Del-real, A. E. Vidal, V. Carrière, M. Castillo-michel, H. Levard et al., , 2017.

, Silver Nanoparticles and Wheat Roots: A Complex Interplay, Environ. Sci. Technol, vol.51, pp.5774-5782


O. Proux, X. Biquard, E. Lahera, J. Menthonnex, A. Prat et al., , p.536

G. Perroux, G. Taunier, P. Grand, D. Jeantet, P. Deléglise et al., 537 FAME : A new beamline for X-ray absorption investigations of very-diluted systems of environmental, 538 material and biological interests, Phys. Scr, vol.115, pp.970-973, 2005.


. R-core-team, R: A language and environment for statistical computing. R Foundation for Statistical 541, 2008.

, Computing

B. Ravel and M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption 543 spectroscopy using IFEFFIT, J. Synchrotron Radiat, vol.12, pp.537-541, 2005.


R. Roubalová, B. P?ytycz, P. Procházková, N. I. Navarro-pacheco, and M. Bilej, Annelida: Environmental 546 Interactions and Ecotoxicity in Relation to the Earthworm Immune System, p.547, 2018.

, Advances in Comparative Immunology, pp.933-951


W. A. Shoults-wilson, B. C. Reinsch, O. V. Tsyusko, P. M. Bertsch, G. V. Lowry et al., Effect of 550 silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms ( 551 Eisenia fetida ), Nanotoxicology, vol.5, pp.432-444, 2010.

N. Sugawara and C. Sugawara, Comparative study of effect of acute administration of cadmium and silver 553 on ceruloplasmin and metallothionein: Involvement of disposition of copper, iron, and zinc, 1984.

. Res, , vol.35, pp.90157-90166

J. Unrine, P. Bertsch, and S. Hunyadi, Bioavailability, Trophic Transfer, and Toxicity of Manufactured 556 Metal and Metal Oxide Nanoparticles in Terrestrial Environments, p.557, 2008.

, Nanotechnology, pp.345-366

K. Usman, S. Khan, S. Ghulam, M. U. Khan, N. Khan et al., Sewage Sludge: An 559, 2012.

, Important Biological Resource for Sustainable Agriculture and Its Environmental Implications, Am. J, vol.560

, Plant Sci, vol.03, pp.1708-1721

M. E. Vance, T. Kuiken, E. P. Vejerano, S. P. Mcginnis, M. F. Hochella et al., , 2015.

, Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory

, Beilstein J. Nanotechnol, vol.6, pp.1769-1780

M. G. Vijver, C. A. Van-gestel, R. P. Lanno, N. M. Van-straalen, and W. J. Peijnenburg, Internal 565 metal sequestration and its ecotoxicological relevance: a review, Environ. Sci. Technol, vol.38, pp.4705-4712, 2004.


M. G. Vijver, J. P. Vink, C. J. Miermans, and C. A. Van-gestel, Oral sealing using glue: a new method 568 to distinguish between intestinal and dermal uptake of metals in earthworms, Soil Biol. Biochem, vol.35, pp.245-251, 2003.

A. Yan and Z. Chen, Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and 571 Underlying Mechanism, Int. J. Mol. Sci, vol.20, 1003.

S. Yu, Y. Yin, and J. Liu, Silver nanoparticles in the environment, Env. Sci Process. Impacts, vol.15, pp.78-92, 2013.