T. Nonoyama, E. Kazamia, H. Nawaly, X. Gao, Y. Tsuji et al., Metabolic Innovations Underpinning the Origin and Diversification of the Diatom Chloroplast, Biomolecules, vol.9, 2019.

R. M. Soo, J. Hemp, D. H. Parks, W. W. Fischer, and P. Hugenholtz, On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria, pp.1436-1440, 1440.

H. S. Yoon, J. D. Hackett, C. Ciniglia, G. Pinto, and D. Bhattacharya, A molecular timeline for the origin of photosynthetic eukaryotes, Mol. Biol. Evol, vol.21, pp.809-818, 2004.

R. G. Dorrell and C. Bowler, Secondary Plastids of Stramenopiles, Advances in Botanical Research, 2017.

P. J. Keeling, The endosymbiotic origin, diversification and fate of plastids, Philos. Trans. R. Soc. B Biol. Sci, vol.365, pp.729-748, 2010.

V. Bhola, F. Swalaha, R. R. Kumar, M. Singh, and F. Bux, Overview of the potential of microalgae for CO 2 sequestration, Int. J. Environ. Sci. Technol, vol.11, pp.2103-2118, 2014.

J. A. Raven, M. Giordano, J. Beardall, and S. C. Maberly, Algal evolution in relation to atmospheric mechanisms and carbon oxidation cycles, Philos. Trans. R. Soc, vol.367, pp.493-507, 2012.

A. Raven, Photosynthetic and non-Photosynthetic roles of carbonic anhydrase in algae and cyanobacteria, Phycologia, vol.34, pp.93-101, 1995.

M. G. Lionetto, R. Caricato, M. E. Giordano, and T. Schettino, The complex relationship between metals and carbonic anhydrase: New insights and perspectives, Int. J. Mol. Sci, vol.17, 2016.

R. J. Dimario, M. C. Machingura, G. L. Waldrop, and J. V. Moroney, The many types of carbonic anhydrases in photosynthetic organisms, Plant Sci, vol.268, pp.11-17, 2018.

S. Kikutani, K. Nakajima, C. Nagasato, Y. Tsuji, A. Miyatake et al., Thylakoid luminal ?-Carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum, Proc. Natl. Acad. Sci, vol.113, pp.9828-9833, 2016.

E. L. Jensen, R. Clement, A. Kosta, S. C. Maberly, and B. Gontero, A new widespread subclass of carbonic anhydrase in marine phytoplankton, ISME J, vol.13, pp.2094-2106, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02176562

A. Nocentini and C. T. Supuran, Carbonic anhydrases: An overview, Carbonic Anhydrases

, , 2019.

C. T. Supuran, Carbonic Anhydrases and Metabolism. Metabolites, vol.8, p.25, 2018.

F. M. Morel, P. J. Lam, and M. A. Saito, Trace Metal Substitution in Marine Phytoplankton, Annu. Rev. Earth Planet. Sci, vol.48, pp.1-27, 2020.

S. Del-prete, D. Vullo, G. M. Fisher, K. T. Andrews, S. A. Poulsen et al., Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum-The ?-Carbonic anhydrases, Bioorganic Med. Chem. Lett, vol.24, pp.4389-4396, 2014.

T. W. Lane, M. A. Saito, G. N. George, I. J. Pickering, R. C. Prince et al., A cadmium enzyme from a marine diatom, Nature, vol.435, 2005.

R. J. Dimario, H. Clayton, A. Mukherjee, M. Ludwig, and J. V. Moroney, Plant Carbonic Anhydrases: Structures, Locations, Evolution, and Physiological Roles, Mol. Plant, vol.10, pp.30-46, 2017.

, Int. J. Mol. Sci, vol.2020, p.2922

D. A. Whittington, A. Waheed, B. Ulmasov, G. N. Shah, J. H. Grubb et al., Crystal structure of the dimeric extracellular domain of human carbonic anhydrase XII, a bitopic membrane protein overexpressed in certain cancer tumor cells, Proc. Natl. Acad. Sci, vol.98, pp.9545-9550, 2002.

C. T. Supuran and C. Capasso, An overview of the bacterial carbonic anhydrases, vol.7, p.56, 2017.

D. Yee and F. M. Morel, In vivo substitution in carbonic of zinc by cobalt of a marine anhydrase diatom, Limnol. Oceanogr, vol.41, pp.573-577, 2011.

P. J. Mcginn and F. M. Morel, Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, Physiol. Plant, vol.133, pp.78-91, 2008.

Y. Xu, L. Feng, P. D. Jeffrey, Y. Shi, and F. M. Morel, Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms, Nature, vol.452, pp.56-61, 2008.

S. Jin, J. Sun, T. Wunder, D. Tang, A. B. Cousins et al., Structural insights into the LCIB protein family reveals a new group of ?-Carbonic anhydrases, Proc. Natl. Acad. Sci, vol.113, pp.14716-14721, 2016.

J. Kim, K. Lee, H. Lee, and M. Kim, The effect of seawater CO 2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment, Limnol. Oceanogr, vol.51, pp.1629-1636, 2006.

J. Gattuso, K. Gao, K. Lee, B. Rost, K. G. Schulz et al., Approaches and tools to manipulate the carbonate chemistry, In Guid. to Best Pract. Ocean Acidif. Res. Data Report, pp.41-52, 2010.

K. Gao and D. A. Campbell, Photophysiological responses of marine diatoms to elevated CO 2 and decreased pH: A review, Funct. Plant Biol, vol.41, pp.449-459, 2014.

M. R. Badger, T. J. Andrews, S. M. Whitney, M. Ludwig, D. C. Yellowlees et al., The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-Based CO 2 -Concentrating mechanisms in algae, Can. J. Bot, vol.76, pp.1052-1071, 1998.

J. N. Young, A. M. Heureux, R. E. Sharwood, R. E. Rickaby, F. M. Morel et al., Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-Concentrating mechanisms, J. Exp. Bot, vol.67, pp.3445-3456, 2016.

A. M. Heureux, J. N. Young, S. M. Whitney, M. R. Eason-hubbard, R. B. Lee et al., The role of Rubisco kinetics and pyrenoid morphology in shaping the CCM of haptophyte microalgae, J. Exp. Bot, vol.68, pp.3959-3969, 2017.

D. W. Husic, H. D. Husic, N. E. Tolbert, and C. C. Black, The oxidative photosynthetic carbon cycle or C 2 cycle, CRC Crit. Rev. Plant Sci, vol.5, pp.45-100, 1987.

S. C. Maberly and B. Gontero, Ecological imperatives for aquatic carbon dioxide-Concentrating mechanisms, J. Exp. Bot, vol.68, pp.3797-3814, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01556739

J. A. Raven, L. A. Ball, J. Beardall, M. Giordano, and S. C. Maberly, Algae lacking CO 2 concentrating mechanisms, Can. J. Bot, vol.83, pp.879-890, 2011.

Y. Matsuda, K. Nakajima, and M. Tachibana, Recent progresses on the genetic basis of the regulation of CO 2 acquisition systems in response to CO 2 concentration, Photosynth. Res, vol.109, pp.191-203, 2011.

B. M. Hopkinson, C. L. Dupont, A. E. Allen, and F. M. Morel, Efficiency of the CO 2 -Concentrating mechanism of diatoms, Proc. Natl. Acad. Sci, vol.108, pp.3830-3837, 2011.

M. Giordano, J. Beardall, and J. A. Raven, CO 2 concentrating mechanisms in algae: Mechanisms, Environmental Modulation, and Evolution, Annu. Rev. Plant Biol, vol.56, pp.99-131, 2005.

J. V. Moroney and A. Somanchi, How Do Algae Concentrate CO 2 to Increase the Efficiency of Photosynthetic Carbon Fixation?, Plant Physiol, vol.119, pp.9-16, 1999.

J. V. Moroney and R. A. Ynalvez, Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii, Eukaryot. Cell, vol.6, pp.1251-1259, 2007.

M. R. Badger and G. D. Price, CO 2 concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution, J. Exp. Bot, vol.54, pp.609-622, 2003.

B. M. Hopkinson, C. L. Dupont, and Y. Matsuda, The physiology and genetics of CO 2 concentrating mechanisms in model diatoms, Curr. Opin. Plant Biol, vol.31, pp.51-57, 2016.

, Int. J. Mol. Sci, vol.2020, p.2922

G. Bowes, S. K. Rao, G. M. Estavillo, and J. Reiskind, C4 mechanisms in aquatic angiosperms: Comparisons with terrestrial C4 systems, Funct. Plant Biol, vol.29, pp.379-392, 2002.

Y. Zhang, L. Yin, H. Jiang, W. Li, B. Gontero et al., Biochemical and biophysical CO 2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae), Photosynth. Res, vol.121, pp.285-297, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01494530

H. Shao, B. Gontero, S. C. Maberly, H. S. Jiang, Y. Cao et al., Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO 2 and light, J. Exp. Bot, vol.68, pp.3985-3995, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01535902

J. Xu, X. Fan, X. Zhang, D. Xu, S. Mou et al., Evidence of Coexistence of C3 and C4 Photosynthetic Pathways in a Green-Tide-Forming Alga, Ulva prolifera, PLoS ONE, vol.7, 2012.

K. Roberts, E. Granum, R. C. Leegood, and J. Raven, C3 and C4 Pathways of Photosynthetic Carbon Assimilation in Marine Diatoms Are under Genetic, Not Environmental, Control. Plant Physiol, vol.145, pp.230-235, 2007.

R. Tanaka, S. Kikutani, A. Mahardika, and Y. Matsuda, Localization of enzymes relating to C4 organic acid metabolisms in the marine diatom, Thalassiosira pseudonana, Photosynth. Res, vol.121, pp.251-263, 2014.

R. Clement, E. Jensen, L. Prioretti, S. C. Maberly, and B. Gontero, Diversity of CO 2 concentrating mechanisms and responses to CO 2 concentration in marine and freshwater diatoms, J. Exp. Bot, vol.68, pp.3925-3935, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01514716

D. Ewe, M. Tachibana, S. Kikutani, A. Gruber, C. Río-bártulos et al., The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum, Photosynth. Res, vol.137, pp.263-280, 2018.

R. Clement, L. Dimnet, S. C. Maberly, and B. Gontero, The nature of the CO 2 -Concentrating mechanisms in a marine diatom, Thalassiosira pseudonana, New Phytol, vol.209, pp.1417-1427, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01406058

M. Haimovich-dayan, N. Garfinkel, D. Ewe, Y. Marcus, A. Gruber et al., The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum, New Phytol, vol.197, pp.177-185, 2013.

M. H. Spalding, Microalgal carbon-Dioxide-Concentrating mechanisms: Chlamydomonas inorganic carbon transporters, J. Exp. Bot, vol.59, pp.1463-1473, 2007.

G. D. Price, Inorganic carbon transporters of the cyanobacterial CO 2 concentrating mechanism, Photosynth. Res, vol.109, pp.47-57, 2011.

A. Klanchui, S. Cheevadhanarak, P. Prommeenate, and A. Meechai, Exploring Components of the CO 2 -Concentrating Mechanism in Alkaliphilic Cyanobacteria Through Genome-Based Analysis, Comput. Struct. Biotechnol. J, vol.15, pp.340-350, 2017.

C. Poschenrieder, A. Fern, J. Ter, and J. Barcel, Transport and Use of Bicarbonate in Plants: Current Knowledge and Challenges Ahead, Int. J. Mol. Sci, 1352.

T. Omata, G. D. Price, M. R. Badger, M. Okamura, S. Gohta et al., Identification of an ATP-Binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. Strain PCC 7942, Proc. Natl. Acad. Sci, vol.96, pp.13571-13576, 1999.

P. J. Mcginn, G. D. Price, R. Maleszka, and M. R. Badger, Inorganic Carbon Limitation and Light Control the Expression of Transcripts Related to the CO 2 -Concentrating Mechanism in the Cyanobacterium Synechocystis sp. Strain PCC6803 1, Plant Physiol, vol.132, pp.218-229, 2003.

J. A. Kaczmarski, N. Hong, B. Mukherjee, L. T. Wey, L. Rourke et al., Structural Basis for the Allosteric Regulation of the SbtA Bicarbonate Transporter by the PII-Like Protein, SbtB, from Cyanobium sp, Biochemistry, vol.7001, pp.5030-5039, 2019.

G. D. Price, F. J. Woodger, M. R. Badger, S. M. Howitt, and L. Tucker, Identification of a SulP-Type bicarbonate transporter in marine cyanobacteria, Proc. Natl. Acad. Sci, vol.101, pp.18228-18332, 2004.

M. R. Badger, G. D. Price, B. M. Long, and F. J. Woodger, The environmental plasticity and ecological genomics of the cyanobacterial CO 2 concentrating mechanism, J. Exp. Bot, vol.57, pp.249-265, 2006.

M. Shibata, H. Ohkawa, T. Kaneko, H. Fukuzawa, S. Tabata et al., Distinct constitutive and low-CO 2 -induced CO 2 uptake systems in cyanobacteria: Genes involved and their phylogenetic relationship with homologous genes in other organisms, Proc. Natl. Acad. Sci, vol.98, pp.2-7, 2001.

, Int. J. Mol. Sci, vol.2020, p.2922

G. Sandrini, R. P. Tann, J. M. Schuurmans, S. A. Van-beusekom, H. C. Matthijs et al., Diel Variation in Gene Expression of the CO 2 -Concentrating Mechanism during a, Harmful Cyanobacterial Bloom. Front. Microbiol, vol.7, pp.1-16, 2016.

M. C. Machingura, J. Bajsa-hirschel, S. M. Laborde, J. B. Schwartzenburg, B. Mukherjee et al., Identification and characterization of a solute carrier, CIA8, involved in inorganic carbon acclimation in Chlamydomonas reinhardtii, J. Exp. Bot, vol.68, pp.3879-3890, 2017.

Y. Wang and M. H. Spalding, Acclimation to very low CO 2 : Contribution of limiting CO 2 inducible proteins, LCIB and LCIA, to onorganic carbon uptake in Chlamydomonas reinhardtii, Plant Physiol, vol.166, pp.2040-2050, 2014.

S. V. Pollock, D. L. Prout, A. C. Godfrey, S. D. Lemaire, and J. V. Moroney, The Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO 2 environment, Plant Mol. Biol, vol.56, pp.125-132, 2004.

K. Nakajima, A. Tanaka, and Y. Matsuda, SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater, Proc. Natl. Acad. Sci, vol.110, pp.1767-1772, 2013.

Y. Matsuda, B. M. Hopkinson, K. Nakajima, C. L. Dupont, and Y. Tsuji, Mechanisms of carbon dioxide acquisition and CO 2 sensing in marine diatoms: A gateway to carbon metabolism, Philos. Trans. R. Soc. B Biol. Sci, vol.372, 2017.

N. U. Meldrum and F. J. Roughton, The state of carbon dioxide in blood, J. Physiol, vol.80, pp.143-170, 1933.

W. R. Chegwidden and N. D. Carter, Introduction to the carbonic anhydrases, The Carbonic Anhydrases

W. R. Chegwidden, N. D. Carter, Y. H. Edwards, . Eds, and . Birkhäuser, , pp.13-28, 2000.

R. E. Forster, Remarks on the discovery of carbonic anhydrase, The Carbonic Anhydrases

W. R. Chegwidden, N. D. Carter, Y. H. Edwards, . Eds, and . Birkhäuser, , pp.1-11, 2000.

C. L. Lomelino, J. T. Andring, and R. Mckenna, Crystallography and Its Impact on Carbonic Anhydrase Research, Int. J. Med. Chem, pp.1-21, 2018.

J. A. Cuesta-seijo, M. S. Borchert, J. C. Navarro-poulsen, K. M. Schnorr, S. B. Mortensen et al., Structure of a dimeric fungal ?-Type carbonic anhydrase, FEBS Lett, vol.585, pp.1042-1048, 2011.

S. Ishida, S. Muto, and S. Miyachi, Structural analysis of periplasmic carbonic anhydrase 1 of Chlamydomonas reinhardtii, Eur. J. Biochem, vol.214, pp.9-16, 1993.

J. V. Moroney, Y. Ma, and W. D. Frey, The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: Intracellular location, expression, and physiological roles, Photosynth. Res, vol.109, pp.133-149, 2011.

A. Aspatwar, S. Haapanen, and S. Parkkila, An update on the metabolic roles of carbonic anhydrases in the model alga Chlamydomonas reinhardtii, vol.8, p.22, 2018.

A. K. So and G. S. .-c.;-espie, Cyanobacterial carbonic anhydrases, Can. J. Bot, vol.83, pp.721-734, 2005.

E. V. Kupriyanova, M. A. Sinetova, V. S. Bedbenov, N. A. Pronina, and D. A. Los, Putative extracellular ?-Class carbonic anhydrase, EcaA, of Synechococcus elongatus PCC 7942 is an active enzyme: A sequel to an old story, vol.164, pp.576-586, 2018.

C. W. Gee and K. K. Niyogi, The carbonic anhydrase CAH1 is an essential component of the carbon-Concentrating mechanism in Nannochloropsis oceanica, Proc. Natl. Acad. Sci, vol.114, pp.4537-4542, 2017.

A. C. Neish, Studies on Chloroplasts: Factors Affecting Their Flocculation and the Calculation of the Chloroplast Content of Leaf Tissue From Chemical Analysis, Biochem. J, vol.33, pp.293-299, 1938.

M. S. Kimber and E. F. Pai, The active site architecture of Pisum sativum ?-Carbonic anhydrase is a mirror image of that of ?-Carbonic anhydrases, EMBO J, vol.19, pp.1407-1418, 2000.

J. D. Cronk, J. A. Endrizzi, M. R. Cronk, and J. W. Neill, Crystal structure of E. coli ?-Carbonic anhydrase, an enzyme with an unusual pH-Dependent activity, Protein Sci, vol.10, pp.911-922, 2001.

A. S. Covarrubias, T. Bergfors, T. A. Jones, and M. Högbom, Structural mechanics of the pH-Dependent activity of ?-Carbonic anhydrase from Mycobacterium tuberculosis, J. Biol. Chem, vol.281, pp.4993-4999, 2006.

M. D. Hatch and J. N. Burnell, Carbonic Anhydrase Activity in Leaves and Its Role in the First Step of C4 Photosynthesis, Plant Physiol, vol.93, pp.825-828, 1990.

N. Fabre, I. M. Reiter, N. Becuwe-linka, B. Genty, and D. Rumeau, Characterization and expression analysis of genes encoding ? and ? carbonic anhydrases in Arabidopsis, Plant Cell Environ, vol.30, pp.617-629, 2007.

R. J. Dimario, J. C. Quebedeaux, D. J. Longstreth, M. Dassanayake, M. M. Hartman et al., The Cytoplasmic Carbonic Anhydrases ? CA2 and ? CA4 Are Required for Optimal Plant Growth at Low CO 2, Plant Physiol, vol.171, pp.280-293, 2016.

C. A. Kerfeld and M. R. Melnicki, Assembly, function and evolution of cyanobacterial carboxysomes, Curr. Opin. Plant Biol, vol.31, pp.66-75, 2016.

A. K. So, G. S. .-c.;-espie, E. B. Williams, J. M. Shively, S. Heinhorst et al., A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell, J. Bacteriol, vol.186, pp.623-630, 2004.

M. R. Sawaya, G. C. Cannon, S. Heinhorst, S. Tanaka, E. B. Williams et al., The structure of ?-Carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two, J. Biol. Chem, vol.281, pp.7546-7555, 2006.

B. E. Alber and J. G. Ferry, A carbonic anhydrase from the archaeon Methanosarcina thermophila, Proc. Natl. Acad. Sci, vol.91, pp.6909-6913, 2006.

S. R. Macauley, S. A. Zimmerman, E. E. Apolinario, C. Evilia, Y. M. Hou et al., The archetype ?-Class carbonic anhydrase (cam) contains iron when synthesized in vivo, Biochemistry, vol.48, pp.817-819, 2009.

L. Wei, Y. Xin, Q. Wang, J. Yang, H. Hu et al., RNAi-Based targeted gene knockdown in the model oleaginous microalgae Nannochloropsis oceanica, vol.89, pp.1236-1250, 2017.

S. B. Roberts, T. W. Lane, and F. M. Morel, Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae), J. Phycol, vol.33, pp.845-850, 1997.

E. V. Armbrust, J. A. Berges, C. Bowler, B. R. Green, D. Martinez et al., The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism, Science, vol.306, pp.79-86, 2004.

C. Bowler, A. E. Allen, J. H. Badger, J. Grimwood, K. Jabbari et al., The Phaeodactylum genome reveals the evolutionary history of diatom genomes, Nature, vol.456, pp.239-244, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00910244

M. Samukawa, C. Shen, B. M. Hopkinson, and Y. Matsuda, Localization of putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana, Photosynth. Res, vol.121, pp.235-249, 2014.

M. Tachibana, A. E. Allen, S. Kikutani, Y. Endo, C. Bowler et al., Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, Photosynth. Res, vol.109, pp.205-221, 2011.

V. Alterio, E. Langella, G. De-simone, and S. M. Monti, Cadmium-Containing carbonic anhydrase CDCA1 in marine diatom Thalassiosira weissflogii, Mar. Drugs, vol.13, pp.1688-1697, 2015.

D. W. Christianson and J. D. Cox, Catalysis by metal-Activated hydroxide in zinc and manganese metalloenzymes, Annu. Rev. Biochem, vol.68, pp.33-57, 1999.

H. Park, B. Song, and F. M. Morel, Diversity of the cadmium-Containing carbonic anhydrase in marine diatoms and natural waters, Environ. Microbiol, vol.9, pp.403-413, 2007.

Y. Tsuji, K. Nakajima, and Y. Matsuda, Molecular aspects of the biophysical CO 2 -Concentrating mechanism and its regulation in marine diatoms, J. Exp. Bot, vol.68, pp.3763-3772, 2017.

T. Yamano, T. Tsujikawa, K. Hatano, S. I. Ozawa, Y. Takahashi et al., Light and low-CO 2 -Dependent LCIBLCIC complex localization in the chloroplast supports the carbon-Concentrating mechanism in Chlamydomonas reinhardtii, Plant Cell Physiol, vol.51, pp.1453-1468, 2010.

R. Clement, S. Lignon, P. Mansuelle, E. Jensen, M. Pophillat et al., Responses of the marine diatom Thalassiosira pseudonana to changes in CO 2 concentration: A proteomic approach, Sci. Rep, vol.7, p.42333, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01445073

J. J. Valenzuela, A. López-garcía-de-lomana, A. Lee, E. V. Armbrust, M. V. Orellana et al., Ocean acidification conditions increase resilience of marine diatoms, Nat. Commun, vol.9, 2018.

A. Blanco-rivero, T. Shutova, M. J. Román, A. Villarejo, and F. Martinez, Phosphorylation controls the localization and activation of the lumenal carbonic anhydrase in Chlamydomonas reinhardtii, PLoS ONE, vol.7, 2012.

, Int. J. Mol. Sci, vol.2020, p.2922

R. A. Ynalvez, Y. Xiao, S. Ayana, K. Cunnusamy, and J. Moroney, Identification and characterization of two closely related beta-carbonic anhydrase from Chlamydomonas reinhardtii, Physiol. Plant, vol.133, pp.15-26, 2008.

K. Miura, T. Yamano, S. Yoshioka, T. Kohinata, and Y. Inoue, Expression Profiling-Based Identification of CO 2 -Responsive Genes Regulated by CCM1 Controlling a Carbon-Concentrating Mechanism in Chlamydomonas reinhardtii, Plant Physiol, vol.135, pp.1595-1607, 2004.

S. Yoshioka, F. Taniguchi, K. Miura, T. Inoue, T. Yamano et al., The Novel Myb Transcription Factor LCR1 Regulates the CO 2 -Responsive Gene Cah1, Encoding a Periplasmic Carbonic Anhydrase in Chlamydomonas reinhardtii, Plant Cell, vol.16, pp.1466-1477, 2004.

J. N. Young and F. M. Morel, Biological oceanography: The CO 2 switch in diatoms, Nat. Clim. Chang, vol.5, pp.1-2, 2015.

N. Ohno, T. Inoue, R. Yamashiki, K. Nakajima, Y. Kitahara et al., CO 2 -cAMP-Responsive cis-Elements Targeted by a Transcription Factor with CREB/ATF-Like Basic Zipper Domain in the Marine Diatom, Plant Physiol, vol.158, pp.499-513, 2012.

A. R. Soto, H. Zheng, D. Shoemaker, J. Rodriguez, B. A. Read et al., Identification and preliminary characterization of two cDNAs encoding unique carbonic anhydrases from the marine alga Emiliania huxleyi, Appl. Environ. Microbiol, vol.72, pp.5500-5511, 2006.

M. Lapointe, T. D. Mackenzie, and D. Morse, An External ?-Carbonic Anhydrase in a Free-Living Marine Dinoflagellate May Circumvent Diffusion-Limited Carbon Acquisition, Plant Physiol, vol.147, pp.1427-1436, 2008.

T. W. Lane and F. M. Morel, Regulation of Carbonic Anhydrase Expression by Zinc, Cobalt, and Carbon Dioxide in the Marine Diatom Thalassiosira weissflogii, Plant Physiol, vol.123, pp.345-352, 2000.

S. Kikutani, R. Tanaka, Y. Yamazaki, S. Hara, T. Hisabori et al., Redox regulation of carbonic anhydrases via thioredoxin in chloroplast of the marine diatom Phaeodactylum tricornutum, J. Biol. Chem, vol.287, pp.20689-20700, 2012.

N. Rouhier, A. Villarejo, M. Srivastava, E. Gelhaye, O. Keech et al., Identification of Plant Glutaredoxin Targets, Antioxid. Redox Signal, vol.7, pp.919-929, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02321218

H. Harada and Y. Matsuda, Identification and characterization of a new carbonic anhydrase in the marine diatom Phaeodactylum tricornutum, Can. J. Bot, vol.916, pp.909-916, 2005.

H. Harada, D. Nakatsuma, M. Ishida, Y. Matsuda, H. Harada et al., Regulation of the Expression of Intracellular ?-Carbonic Anhydrase in Response to CO 2 and Light in the Marine Diatom Phaeodactylum tricornutum, Plant Physiol, vol.139, pp.1041-1050, 2017.

Y. Li, S. Zhuang, Y. Wu, H. Ren, F. Chen et al., Ocean Acidification modulates expression of genes and physiological performance of a marine diatom, PLoS ONE, vol.12, pp.1-13, 2017.

L. Nienaber, E. Cave-freeman, M. Cross, L. Mason, U. Bailey et al., Chemical probing suggests redox-Regulation of the carbonic anhydrase activity of mycobacterial Rv1284, FEBS J, vol.282, pp.2708-2721, 2015.

C. Geers and G. Gros, Carbon Dioxide Transport and Carbonic Anhydrase in Blood and Muscle, Physiol. Rev, vol.80, pp.681-707, 2000.

J. Fegler, Function of Carbonic Anhydrase in Blood, Nature, vol.153, pp.137-138, 1944.

R. P. Henry, The Role of Carbonic Anhydrase in Blood Ion and Acid-Base regulation, Amer. Zool, vol.251, pp.241-251, 1984.

H. Hu, W. Rappel, R. Occhipinti, A. Ries, M. Böhmer et al., Distinct Cellular Locations of Carbonic Anhydrases Mediate Carbon Dioxide Control of Stomatal Movements, Plant Physiol, vol.169, pp.1168-1178, 2015.

A. R. Kolbe, T. P. Brutnell, A. B. Cousins, and A. J. Studer, Carbonic Anhydrase Mutants in Zea mays Have Altered Stomatal Responses to Environmental Signals, Plant Physiol, vol.177, pp.980-989, 2018.

C. V. Hoang and K. D. Chapman, Biochemical and Molecular Inhibition of Plastidial Carbonic Anhydrase Reduces the Incorporation of Acetate into Lipids in Cotton Embryos and Tobacco Cell Suspensions and Leaves, Plant Physiol, vol.128, pp.1417-1427, 2002.

, Int. J. Mol. Sci, vol.2020, p.2922

N. Kavroulakis, E. Flemetakis, G. Aivalakis, and P. Katinakis, Carbon Metabolism in Developing Soybean Root Nodules: The Role of Carbonic Anhydrase, Mol. Plant Microbe Interact, vol.13, pp.14-22, 2000.

M. A. Sinetova, E. V. Kupriyanova, A. G. Markelova, S. I. Allakhverdiev, and N. A. Pronina, Identification and functional role of the carbonic anhydrase Cah3 in thylakoid membranes of pyrenoid of Chlamydomonas reinhardtii, Biochim. Biophys. Acta Bioenerg, vol.1817, pp.1248-1255, 2012.

N. Sato, K. Sonoike, M. Tsuzuki, and A. Kawaguchi, Photosynthetic characteristics of a mutant of Chlamydomonas reinhardtii impaired in fatty acid desaturation in chloroplasts, Biochim. Biophys. Acta Bioenerg, vol.1274, pp.112-118, 1996.

L. C. Mackinder, C. Chen, R. D. Leib, W. Patena, S. R. Blum et al., A Spatial Interactome Reveals the Anatomy of the Algal CO 2 Concentrating Mechanism, vol.171, pp.1-28, 2017.

H. Choi, Y. Ii;-hwan, and S. Kwak, Quantitative analysis of the chemotaxis of a green alga, Chlamydomonas reinhardtii, to bicarbonate using diffusion-Based microfluidic device, Biomicrofluidics, vol.10, pp.1-15, 2016.

M. R. Clegg, S. C. Maberly, and R. I. Jones, Chemosensory behavioural response of freshwater phytoplanktonic flagellates, Plant Cell Environ, vol.27, pp.123-135, 2004.

M. Giordano, A. Norici, M. Forssen, M. Eriksson, J. A. Raven et al., An Anaplerotic Role for Mitochondrial Carbonic Anhydrase in Chlamydomonas reinhardtii, Plant Physiol, vol.132, pp.2126-2134, 2003.

P. G. Kroth, A. Chiovitti, A. Gruber, V. Martin-jezequel, T. Mock et al., A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis, PLoS ONE, vol.3, 1426.

W. G. Sunda and S. A. Huntsman, Relationships among growth rate, cellular manganese concentrations and manganese transport kinetics in estuarine and oceanic species of the diatom Thalassiosira, J. Phycol, vol.22, pp.259-270, 1986.

W. G. Sunda and S. A. Huntsman, Cobalt and zinc interreplacement in marine phytoplankton: Biological and geochemical implications, Limnol. Oceanogr, vol.40, pp.1404-1417, 1995.

F. Wolfe-simon, V. Starovoytov, J. R. Reinfelder, O. Schofield, and P. G. Falkowski, Localization and role of manganese superoxide dismutase in a marine diatom, Plant Physiol, vol.142, pp.1701-1709, 2006.

N. Bondarava, S. Un, and A. Krieger-liszkay, Manganese binding to the 23 kDa extrinsic protein of Photosystem II, Biochim. Biophys. Acta Bioenerg, vol.1767, pp.583-588, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00259043

W. G. Sunda and S. A. Huntsman, Interactive effects of external manganese, the toxic metals copper and zinc, and light in controlling cellular manganese and growth in a coastal diatom, Limnol. Oceanogr, vol.43, pp.1467-1475, 1998.

J. E. Heindl, M. E. Hibbing, J. Xu, R. Natarajan, A. M. Buechlein et al., Discrete Responses to Limitation for Iron and Manganese in Agrobacterium tumefaciens: Influence on Attachment and Biofilm Formation, J. Bacteriol, vol.198, pp.816-829, 2016.

H. Do, N. Makthal, P. Chandrangsu, R. J. Olsen, J. D. Helmann et al., Metal sensing and regulation of adaptive responses to manganese limitation by MtsR is critical for group A streptococcus virulence, Nucleic Acids Res, vol.1, pp.1-18, 2019.

D. A. Los, A. Zorina, M. Sinetova, S. Kryazhov, K. Mironov et al., Stress sensors and signal transducers in cyanobacteria, Sensors, vol.10, pp.2386-2415, 2010.

T. Ogawa, D. H. Bao, H. Katoh, M. Shibata, H. B. Pakrasi et al., A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis 6803, a photosynthetic organism, J. Biol. Chem, vol.277, pp.28981-28986, 2002.

M. D. Allen, J. Kropat, S. Tottey, J. A. Del-campo, and S. S. Merchant, Manganese Deficiency in Chlamydomonas Results in Loss of Photosystem II and MnSOD Function, Sensitivity to Peroxides, and Secondary Phosphorus and Iron Deficiency, Plant Physiol, vol.143, pp.263-277, 2006.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI