C. P. Denton, D. Khanna, and . Systemic-sclerosis, Lancet, vol.390, pp.1685-99, 2017.

Y. Distler, O. Matucci-cerinic, and M. , Review: defining a unified vascular phenotype in systemic sclerosis, Arthritis Rheumatol, vol.70, pp.162-70, 2018.

M. Nikpour and M. Baron, Mortality in systemic sclerosis: lessons learned from populationbased and observational cohort studies, Curr Opin Rheumatol, vol.26, pp.131-138, 2014.

. Tyndall-aj, B. Bannert, and M. Vonk, Causes and risk factors for death in systemic sclerosis: a study from the eUlaR scleroderma Trials and Research (eUsTaR) database, Ann Rheum Dis, vol.69, pp.1809-1824, 2010.

D. R. Poudel, D. Jayakumar, and . Danve-a, Determinants of mortality in systemic sclerosis: a focused review, Rheumatol Int, vol.38, pp.1847-58, 2018.

R. Young-a,-namas and C. Dodge, Hand impairment in systemic sclerosis: various manifestations and currently available treatment, Curr Treatm Opt Rheumatol, vol.2, pp.252-69, 2016.

F. C. Araújo, C. Z. Camargo, and C. Kayser, Validation of the aCR/eUlaR classification criteria for systemic sclerosis in patients with early scleroderma, Rheumatol Int, vol.37, pp.1825-1858, 2017.

K. M. Sullivan, . Goldmuntz-ea, and . Keyes-elstein-l, Myeloablative autologous stem-cell transplantation for severe scleroderma, N Engl J Med, vol.378, pp.35-47, 2018.

R. K. Burt and D. Farge, systemic sclerosis: autologous HsCT is efficacious, but can we make it safer, Nat Rev Rheumatol, vol.14, pp.189-91, 2018.

O. Kowal-bielecka, J. Fransen, and J. , Update of eUlaR recommendations for the treatment of systemic sclerosis, Ann Rheum Dis, vol.76, pp.1327-1366, 2017.

. Maria-at, M. Maumus, and . Le-quellec-a, adipose-derived mesenchymal stem cells in autoimmune disorders: state of the art and perspectives for systemic sclerosis, Clin Rev Allergy Immunol, vol.52, pp.234-59, 2017.

. Maria-at, K. Toupet, and M. Maumus, Human adipose mesenchymal stem cells as potent anti-fibrosis therapy for systemic sclerosis, J Autoimmun, vol.70, pp.31-40, 2016.

. Maria-at, K. Toupet, and C. Bony, antifibrotic, antioxidant, and immunomodulatory effects of mesenchymal stem cells in HOCl-induced systemic sclerosis, Arthritis Rheumatol, vol.68, pp.1013-1038, 2016.

. Scuderi-n,-ceccarelli-s and M. G. Onesti, Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis, Cell Transplant, vol.22, pp.779-95, 2013.

P. Bora and . Majumdar-as, adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation, Stem Cell Res Ther, vol.8, p.145, 2017.

V. M. Ramakrishnan and B. Nl, The adipose stromal vascular fraction as a complex cellular source for tissue engineering applications, Tissue Eng Part B Rev, vol.24, pp.289-99, 2018.

. Klar-as, . Güven-s, and J. Zimoch, Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute, Pediatr Surg Int, vol.32, pp.17-27, 2016.

. Poitevin-s and D. Cussac, sphingosine kinase 1 expressed by endothelial colony-forming cells has a critical role in their revascularization activity, Cardiovasc Res, vol.103, pp.121-151, 2014.

A. Rheum and D. , , 2019.

B. Granel, . Daumas-a, and . Jouve-e, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase i trial, Ann Rheum Dis, vol.74, pp.2175-82, 2015.

J. Daumas-a,-magalon and . Jouve-e, long-term follow-up after autologous adiposederived stromal vascular fraction injection into fingers in systemic sclerosis patients, Curr Res Transl Med, vol.65, pp.40-43, 2017.

Y. J. Koh, K. Bi, and H. Kim, stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells, Arterioscler Thromb Vasc Biol, vol.31, pp.1141-50, 2011.

. Serratrice-n,-bruzzese-l and J. Magalon, new fat-derived products for treating skininduced lesions of scleroderma in nude mice, Stem Cell Res Ther, vol.5, p.138, 2014.

K. Comella, J. Parcero, and H. Bansal, effects of the intramyocardial implantation of stromal vascular fraction in patients with chronic ischemic cardiomyopathy, J Transl Med, vol.14, p.158, 2016.

Y. Mostmans, M. Cutolo, and C. Giddelo, The role of endothelial cells in the vasculopathy of systemic sclerosis: a systematic review, Autoimmun Rev, vol.16, pp.774-86, 2017.

. Brunasso-am and C. Massone, Update on the pathogenesis of scleroderma: focus on circulating progenitor cells, F1000Res, vol.5, p.723, 2016.

V. Vanneaux and D. Farge-bancel, expression of transforming growth factor ? receptor ii in mesenchymal stem cells from systemic sclerosis patients, BMJ Open, vol.3, p.1890, 2013.

P. Cipriani, . Marrelli-a, and P. D. Benedetto, scleroderma mesenchymal stem cells display a different phenotype from healthy controls; implications for regenerative medicine, Angiogenesis, vol.16, pp.595-607, 2013.

C. Capelli, . Zaccara-e, and P. Cipriani, Phenotypical and functional characteristics of in vitro-expanded adipose-derived mesenchymal stromal cells from patients with systematic sclerosis, Cell Transplant, vol.26, pp.841-54, 2017.

M. Manetti and R. I. Romano-e, endothelial-to-mesenchymal transition contributes to endothelial dysfunction and dermal fibrosis in systemic sclerosis, Ann Rheum Dis, vol.76, pp.924-958, 2017.

J. Avouac, . Cagnard-n, and J. H. Distler, insights into the pathogenesis of systemic sclerosis based on the gene expression profile of progenitor-derived endothelial cells, Arthritis Rheum, vol.63, pp.3552-62, 2011.

R. Vs, K. Howell, and K. Csiszar, shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis, Arthritis Res Ther, vol.7, pp.1113-1136, 2005.

F. Cianfarani, G. Toietta, D. Rocco, and G. , Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing, Wound Repair Regen, vol.21, pp.545-53, 2013.

C. D. Christian and K. , adipose-derived stromal vascular fraction cells isolated from old animals exhibit reduced capacity to support the formation of microvascular networks, Exp Gerontol, vol.63, pp.18-26, 2015.

. Navarro-a,-marín-s and . Riol-n, 35 awgulewitsch CP, Trinh lT, Hatzopoulos aK. The vascular wall: a plastic hub of activity in cardiovascular homeostasis and disease, Stem Cell Res Ther, vol.5, p.51, 2014.

P. Wörsdörfer, . Mekala-sr, and J. Bauer, The vascular adventitia: an endogenous, omnipresent source of stem cells in the body, Pharmacol Ther, vol.171, pp.13-29, 2017.

D. O. Traktuev and . Prater-dn, Merfeld-Clauss s, et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells, Circ Res, vol.104, pp.1410-1430, 2009.

D. O. Traktuev and J. Merfeld-clauss-s,-li, a population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks, Circ Res, vol.102, pp.77-85, 2008.

W. Lu, Vascular stem/progenitor cells: functions and signaling pathways, Cell Mol Life Sci, vol.75, pp.859-69, 2018.

V. Wiwanitkit, serum apelin levels in systemic sclerosis, J Eur Acad Dermatol Venereol, vol.27, p.1586, 2013.

Y. Aozasa-n and K. , serum apelin levels: clinical association with vascular involvements in patients with systemic sclerosis, J Eur Acad Dermatol Venereol, vol.27, pp.37-42, 2013.

G. Tabib and T. , single Cell Rna sequencing identifies HsPG2 and aPlnR as markers of endothelial cell injury in systemic sclerosis skin, Front Immunol, vol.9, p.2191, 2018.

P. Song, T. Ramprasath, and H. Wang, abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases, Cell Mol Life Sci, vol.74, pp.2899-916, 2017.

B. L. Legány-n and . Kovács-l, The role of B7 family costimulatory molecules and indoleamine 2,3-dioxygenase in primary sjögren's syndrome and systemic sclerosis, Immunol Res, vol.65, pp.622-631, 2017.

V. Lambrecht-s,-smith, D. Wilde, and K. , Growth differentiation factor 15, a marker of lung involvement in systemic sclerosis, is involved in fibrosis development but is not indispensable for fibrosis development, Arthritis Rheumatol, vol.66, pp.418-445, 2014.

F. T. Gamal-sm,-elgengehy and . Kamal-a, Growth Differentiation Factor-15 (GDF-15) level and relation to clinical manifestations in egyptian systemic sclerosis patients: preliminary data, Immunol Invest, vol.46, pp.703-716, 2017.

K. Yanaba, Y. Tada, and Y. , Clinical significance of serum growth differentiation factor-15 levels in systemic sclerosis: association with disease severity, Mod Rheumatol, vol.22, pp.668-75, 2012.

K. Lakota, M. Carns, and . Podlusky-s, serum amyloid a is a marker for pulmonary involvement in systemic sclerosis, PLoS One, vol.10, p.110820, 2015.

O. Rooney, P. Molloy, and D. , Regulation of inflammation and angiogenesis in giant cell arteritis by acute-phase serum amyloid a, Arthritis Rheumatol, vol.67, pp.2447-56, 2015.

D. D. Chan, W. F. Xiao, and J. Li, Deficiency of hyaluronan synthase 1 (Has1) results in chronic joint inflammation and widespread intra-articular fibrosis in a murine model of knee joint cartilage damage, Osteoarthritis Cartilage, vol.23, pp.1879-89, 2015.

A. Rheum and D. , , 2019.