C. M. Boulanger, X. Loyer, and P. Rautou, Extracellular vesicles in coronary artery disease, Nat 3 Rev Cardiol, vol.14, pp.259-72, 2017.

B. György, T. G. Szabó, and M. Pásztói, Membrane vesicles, current state-of-the-art: emerging 5 role of extracellular vesicles, Cell Mol Life Sci CMLS, vol.68, pp.2667-88, 2011.

C. Ciardiello, L. Cavallini, and C. Spinelli, Focus on Extracellular Vesicles: New Frontiers of Cell-7 to-Cell Communication in Cancer, Int J Mol Sci, vol.17, p.175, 2016.

F. Dignat-george and C. M. Boulanger, The many faces of endothelial microparticles, Arterioscler 9 Thromb Vasc Biol, vol.31, pp.27-33, 2011.

V. C. Ridger, C. M. Boulanger, and A. Angelillo-scherrer, Microvesicles in vascular homeostasis 11 and diseases, Thromb Haemost, vol.117, pp.1296-316, 2017.

B. Engelmann and S. Massberg, Thrombosis as an intravascular effector of innate immunity, Nat 13 Rev Immunol, vol.13, pp.34-45, 2013.

J. Suzuki, M. Umeda, and P. J. Sims, Calcium-dependent phospholipid scrambling by TMEM16F. 15, Nature, vol.468, pp.834-842, 2010.

T. Lhermusier, H. Chap, and B. Payrastre, Platelet membrane phospholipid asymmetry: from the 17 characterization of a scramblase activity to the identification of an essential protein mutated 18 in Scott syndrome, J Thromb Haemost JTH, vol.9, pp.1883-91, 2011.

H. F. Dvorak, S. C. Quay, and N. S. Orenstein, Tumor shedding and coagulation, Science, vol.212, pp.20-923, 1981.

H. F. Dvorak, L. Van-dewater, and A. M. Bitzer, Procoagulant activity associated with plasma 22 membrane vesicles shed by cultured tumor cells, Cancer Res, vol.43, pp.4434-4476, 1983.

M. Collier and C. Ettelaie, Regulation of the incorporation of tissue factor into microparticles by 24 serine phosphorylation of the cytoplasmic domain of tissue factor, J Biol Chem, vol.286, pp.25-11977, 2011.

M. Collier, A. Maraveyas, C. Ettelaie, A. S. Rothmeier, P. Marchese et al., Filamin-A is required for the incorporation of tissue 27 factor into cell-derived microvesicles, Thromb Haemost, vol.111, p.15, 2014.

C. Ettelaie, M. Collier, and S. Featherby, Oligoubiquitination of tissue factor on Lys255 31 promotes Ser253-dephosphorylation and terminates TF release, Biochim Biophys Acta, vol.32, pp.2846-57, 2016.

A. S. Rothmeier, P. Marchese, and F. Langer, Tissue Factor Prothrombotic Activity Is Regulated 34 by Integrin-arf6 Trafficking, Arterioscler Thromb Vasc Biol, vol.37, pp.1323-1354, 2017.

F. Sabatier, V. Roux, and F. Anfosso, Interaction of endothelial microparticles with monocytic 36 cells in vitro induces tissue factor-dependent procoagulant activity, Blood, vol.99, p.33, 2002.

F. G. Gomes, V. Sandim, and V. H. Almeida, Breast-cancer extracellular vesicles induce platelet 1 activation and aggregation by tissue factor-independent and -dependent mechanisms

, Thromb Res, vol.159, pp.24-32, 2017.

S. Falati, Q. Liu, and P. Gross, Accumulation of tissue factor into developing thrombi in vivo is 4 dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin, J Exp 5 Med, vol.197, pp.1585-98, 2003.

J. Chou, N. Mackman, and G. Merrill-skoloff, Hematopoietic cell-derived microparticle tissue 7 factor contributes to fibrin formation during thrombus propagation, Blood, vol.104, pp.3190-3197, 2004.

A. P. Owens and N. Mackman, Microparticles in hemostasis and thrombosis, Circ Res, vol.108, pp.9-1284, 2011.

J. I. Zwicker, C. C. Trenor, and B. C. Furie, Tissue factor-bearing microparticles and thrombus 11 formation, Arterioscler Thromb Vasc Biol, vol.31, pp.728-761, 2011.

P. H. Reitsma, H. H. Versteeg, and S. Middeldorp, Mechanistic view of risk factors for venous 13 thromboembolism, Arterioscler Thromb Vasc Biol, vol.32, pp.563-571, 2012.

D. Mege, L. Crescence, and M. Ouaissi, Fibrin-bearing microparticles: marker of thrombo-15 embolic events in pancreatic and colorectal cancers, Oncotarget, vol.8, p.40, 2017.

Y. Hisada and N. Mackman, Mouse models of cancer-associated thrombosis, Thromb Res, vol.164, pp.48-53, 2018.

H. T. Sørensen, L. Mellemkjaer, and J. H. Olsen, Prognosis of cancers associated with venous 19 thromboembolism, N Engl J Med, vol.343, pp.1846-50, 2000.

M. Tesselaar, F. Romijn, and I. K. Van-der-linden, Microparticle-associated tissue factor 21 activity: a link between cancer and thrombosis?, J Thromb Haemost, vol.5, pp.520-527, 2007.

J. I. Zwicker, H. A. Liebman, and D. Neuberg, Tumor-derived tissue factor-bearing microparticles 23 are associated with venous thromboembolic events in malignancy, Clin Cancer Res Off J Am 24 Assoc Cancer Res, vol.15, pp.6830-6870, 2009.

D. A. Manly, J. Wang, and S. L. Glover, Increased microparticle tissue factor activity in cancer 26 patients with Venous Thromboembolism, Thromb Res, vol.125, pp.511-513, 2010.

E. Campello, L. Spiezia, and C. M. Radu, Endothelial, platelet, and tissue factor-bearing 28 microparticles in cancer patients with and without venous thromboembolism, Thromb Res, vol.29, pp.473-480, 2011.

A. A. Khorana, C. W. Francis, and K. E. Menzies, Coagulation activation and microparticle-33 associated coagulant activity in cancer patients. An exploratory prospective study, Thromb 34 Haemost, vol.6, pp.160-165, 2008.

M. T. Sartori, D. Puppa, A. Ballin, and A. , Circulating microparticles of glial origin and tissue 36 factor bearing in high-grade glioma: a potential prothrombotic role, Thromb Haemost, vol.37, pp.378-85, 2013.

A. Bharthuar, A. A. Khorana, and A. Hutson, Circulating microparticle tissue factor, 1 thromboembolism and survival in pancreaticobiliary cancers, Thromb Res, vol.132, p.50, 2013.

F. Woei-a-jin, M. Tesselaar, G. Rodriguez, and P. , Tissue factor-bearing microparticles 3 and CA19.9: two players in pancreatic cancer-associated thrombosis?, Br J Cancer, vol.115, pp.4-332, 2016.

N. Van-es, Y. Hisada, D. Nisio, and M. , Extracellular vesicles exposing tissue factor for the 6 prediction of venous thromboembolism in patients with cancer: A prospective cohort study

, Thromb Res, vol.166, pp.54-63, 2018.

D. Faille, M. Bourrienne, and E. De-raucourt, Biomarkers for the risk of thrombosis in 9 pancreatic adenocarcinoma are related to cancer process, Oncotarget, vol.9, p.53, 2018.

J. Thaler, C. Ay, and H. Weinstabl, Circulating procoagulant microparticles in cancer patients
URL : https://hal.archives-ouvertes.fr/hal-00589430

, Ann Hematol, vol.90, pp.447-53, 2011.

J. Thaler, C. Ay, and N. Mackman, Microparticle-associated tissue factor activity, venous 13 thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients, J 14 Thromb Haemost, vol.10, pp.1363-70, 2012.

C. Hernández, J. Orbe, and C. Roncal, Tissue factor expressed by microparticles is associated 16 with mortality but not with thrombosis in cancer patients, Thromb Haemost, vol.110, p.598, 2013.

C. Cui, G. Wang, and S. Yang, Tissue Factor-bearing MPs and the risk of venous thrombosis 19 in cancer patients: A meta-analysis, Sci Rep, vol.8, p.57, 2018.

Y. Hisada and N. Mackman, Cancer-associated pathways and biomarkers of venous thrombosis, Blood, vol.130, pp.1499-506, 2017.

D. Mege, S. Mezouar, and F. Dignat-george, Microparticles and cancer thrombosis in animal 23 models, Thromb Res, vol.140, pp.21-27, 2016.

G. M. Thomas, L. Panicot-dubois, and R. Lacroix, Cancer cell-derived microparticles bearing P-25 selectin glycoprotein ligand 1 accelerate thrombus formation in vivo, J Exp Med, vol.206, pp.26-1913, 2009.

S. Mezouar, R. Darbousset, and F. Dignat-george, Inhibition of platelet activation prevents the 28 P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces 29 tumor growth and metastasis in vivo, Int J Cancer, vol.136, pp.462-75, 2015.

G. M. Thomas, A. Brill, and S. Mezouar, Tissue factor expressed by circulating cancer cell-derived 31 microparticles drastically increases the incidence of deep vein thrombosis in mice, J Thromb 32 Haemost, vol.13, pp.1310-1319, 2015.

J. E. Geddings, Y. Hisada, and Y. Boulaftali, Tissue factor-positive tumor microvesicles activate 34 platelets and enhance thrombosis in mice, J Thromb Haemost, vol.14, pp.153-66, 2016.

Y. Hisada, C. Ay, and A. C. Auriemma, Human pancreatic tumors grown in mice release tissue 36 factor-positive microvesicles that increase venous clot size, J Thromb Haemost, vol.15, pp.37-2208, 2017.

K. Date, C. Ettelaie, and A. Maraveyas, Tissue factor-bearing microparticles and inflammation: a 1 potential mechanism for the development of venous thromboembolism in cancer, J Thromb 2 Haemost JTH, vol.15, pp.2289-99, 2017.

K. Stark, I. Schubert, and U. Joshi, Distinct Pathogenesis of Pancreatic Cancer Microvesicle-4

, Associated Venous Thrombosis Identifies New Antithrombotic Targets In Vivo, Arterioscler 5 Thromb Vasc Biol, vol.38, pp.772-86, 2018.

A. Lee, M. N. Levine, and R. I. Baker, Low-molecular-weight heparin versus a coumarin for the 7 prevention of recurrent venous thromboembolism in patients with cancer, N Engl J Med, vol.8, pp.146-53, 2003.

A. Lee, P. W. Kamphuisen, and G. Meyer, Tinzaparin vs Warfarin for Treatment of Acute 10

, Venous Thromboembolism in Patients With Active Cancer: A Randomized Clinical Trial, JAMA, vol.11, pp.677-86, 2015.

M. B. Streiff, D. Milentijevic, and K. Mccrae, The polyphosphate/factor XII pathway in cancer-18 associated thrombosis: novel perspectives for safe anticoagulation in patients with 19 malignancies, Am J Hematol, vol.93, issue.2, pp.4-7, 2015.

K. Suzuki-inoue, Y. Kato, and O. Inoue, Involvement of the snake toxin receptor CLEC-2, in 21 podoplanin-mediated platelet activation, by cancer cells, J Biol Chem, vol.282, p.72, 2007.

J. Thaler, S. Koder, and G. Kornek, Microparticle-associated tissue factor activity in patients 23 with metastatic pancreatic cancer and its effect on fibrin clot formation, Transl Res J Lab Clin 24 Med, vol.163, pp.145-50, 2014.

J. Riedl, M. Preusser, and P. Nazari, Podoplanin expression in primary brain tumors induces 26 platelet aggregation and increases risk of venous thromboembolism, Blood, vol.129, p.1831, 2017.

A. C. Leal, D. M. Mizurini, and T. Gomes, Tumor-Derived Exosomes Induce the Formation of 29

, Neutrophil Extracellular Traps: Implications For The Establishment of Cancer-Associated 30 Thrombosis, Sci Rep, vol.7, p.6438, 2017.

G. Tans, J. Rosing, and M. C. Thomassen, Comparison of anticoagulant and procoagulant 32 activities of stimulated platelets and platelet-derived microparticles, Blood, vol.77, p.76, 1991.

B. Dahlbäck, T. Wiedmer, and P. J. Sims, Binding of anticoagulant vitamin K-dependent protein S to 34 platelet-derived microparticles, Biochemistry, vol.31, pp.12769-77, 1992.

F. Stavenuiter, N. F. Davis, and E. Duan, Platelet protein S directly inhibits procoagulant activity 36 on platelets and microparticles, Thromb Haemost, vol.109, p.78, 2013.

M. Pérez-casal, C. Downey, and K. Fukudome, Activated protein C induces the release of 38 microparticle-associated endothelial protein C receptor, Blood, vol.105, p.79, 2005.

N. Satta, J. M. Freyssinet, and F. Toti, The significance of human monocyte thrombomodulin during 1 membrane vesiculation and after stimulation by lipopolysaccharide, Br J Haematol, vol.96, pp.2-534, 1997.

B. Steppich, C. Mattisek, and D. Sobczyk, Tissue factor pathway inhibitor on circulating 4 microparticles in acute myocardial infarction, Thromb Haemost, vol.93, pp.35-44, 2005.

G. Tsimerman, A. Roguin, and A. Bachar, Involvement of microparticles in diabetic vascular 6 complications, Thromb Haemost, vol.106, pp.310-331, 2011.

A. Aharon, T. Tamari, and B. Brenner, Monocyte-derived microparticles and exosomes induce 8 procoagulant and apoptotic effects on endothelial cells, Thromb Haemost, vol.100, pp.878-85, 2008.

A. Aharon, S. Katzenell, and T. Tamari, Microparticles bearing tissue factor and tissue factor 10 pathway inhibitor in gestational vascular complications, J Thromb Haemost, vol.7, p.84, 2009.

A. Aharon, A. Sabbah, and S. Ben-shaul, Chemotherapy administration to breast cancer 12 patients affects extracellular vesicles thrombogenicity and function, Oncotarget, vol.8, pp.13-63265, 2017.

D. Gheldof, F. Mullier, and B. Chatelain, Inhibition of tissue factor pathway inhibitor increases 15 the sensitivity of thrombin generation assay to procoagulant microvesicles, Blood Coagul, p.16

, Fibrinolysis Int J Haemost Thromb, vol.24, pp.567-72, 2013.

M. Hellum, I. Franco-lie, and R. Øvstebø, The effect of corn trypsin inhibitor, anti-tissue factor 18 pathway inhibitor antibodies and phospholipids on microvesicle-associated thrombin 19 generation in patients with pancreatic cancer and healthy controls, PloS One, vol.12, p.87, 2017.

V. Dolo, A. Ginestra, and G. Ghersi, Human breast carcinoma cells cultured in the presence of 22 serum shed membrane vesicles rich in gelatinolytic activities, J Submicrosc Cytol Pathol, vol.23, pp.173-80, 1994.

A. Ginestra, S. Monea, and G. Seghezzi, Urokinase plasminogen activator and gelatinases are 25 associated with membrane vesicles shed by human HT1080 fibrosarcoma cells, J Biol Chem, vol.26, pp.17216-17238, 1997.

V. Dolo, A. Ginestra, and D. Cassarà, Selective localization of matrix metalloproteinase 9, beta1 28 integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 29 8701-BC breast carcinoma cells, Cancer Res, vol.58, pp.4468-74, 1998.

V. Dolo, D. 'ascenzo, S. Violini, and S. , Matrix-degrading proteinases are shed in membrane 31 vesicles by ovarian cancer cells in vivo and in vitro, Clin Exp Metastasis, vol.17, p.91, 1999.

A. Ginestra, D. Miceli, and V. Dolo, Membrane vesicles in ovarian cancer fluids: a new potential 33 marker, Anticancer Res, vol.19, pp.3439-3484, 1999.

L. E. Graves, E. V. Ariztia, and J. R. Navari, Proinvasive properties of ovarian cancer ascites-derived 35 membrane vesicles, Cancer Res, vol.64, pp.7045-7054, 2004.

D. Millimaggi, C. Festuccia, and A. Angelucci, Osteoblast-conditioned media stimulate 37 membrane vesicle shedding in prostate cancer cells, Int J Oncol, vol.28, p.94, 2006.

A. Ginestra, L. Placa, M. D. Saladino, and F. , The amount and proteolytic content of vesicles shed 1 by human cancer cell lines correlates with their in vitro invasiveness, Anticancer Res, vol.18, issue.2, pp.3433-3440, 1998.

A. Angelucci, D. 'ascenzo, S. Festuccia, and C. , Vesicle-associated urokinase plasminogen 4 activator promotes invasion in prostate cancer cell lines, Clin Exp Metastasis, vol.18, pp.163-168, 2000.

T. Jung, D. Castellana, and P. Klingbeil, CD44v6 dependence of premetastatic niche preparation 7 by exosomes, Neoplasia N Y N, vol.11, pp.1093-105, 2009.

J. Mccready, J. D. Sims, and D. Chan, Secretion of extracellular hsp90alpha via exosomes 9 increases cancer cell motility: a role for plasminogen activation, BMC Cancer, vol.10, p.98, 2010.

R. Lacroix, F. Sabatier, and A. Mialhe, Activation of plasminogen into plasmin at the surface of 11 endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial 12 progenitor cells in vitro, Blood, vol.110, pp.2432-2441, 2007.

T. Dejouvencel, L. Doeuvre, and R. Lacroix, Fibrinolytic cross-talk: a new mechanism for 14 plasmin formation, Blood, vol.115, pp.2048-56, 2010.

R. Lacroix, L. Plawinski, and S. Robert, Leukocyte-and endothelial-derived microparticles: a 16 circulating source for fibrinolysis, Haematologica, vol.97, pp.1864-72, 2012.

R. Lacroix and F. Dignat-george, Microparticles: new protagonists in pericellular and intravascular 18 proteolysis, Semin Thromb Hemost, vol.39, pp.33-42, 2013.

H. C. Kwaan and E. M. Rego, Role of microparticles in the hemostatic dysfunction in acute 20 promyelocytic leukemia, Semin Thromb Hemost, vol.36, pp.917-941, 2010.

L. Durrieu, A. Bharadwaj, and D. M. Waisman, Analysis of the thrombotic and fibrinolytic activities of 22 tumor cell-derived extracellular vesicles, Blood Adv, vol.2, pp.1054-65, 2018.

K. Al-nedawi, J. Szemraj, and C. S. Cierniewski, Mast cell-derived exosomes activate endothelial cells 24 to secrete plasminogen activator inhibitor type 1, Arterioscler Thromb Vasc Biol, vol.25, pp.25-1744, 2005.

A. Saleh, H. A. Haas-neill, S. , and A. , Thrombotic characteristics of extracellular 27 vesicles derived from prostate cancer cells, The Prostate, vol.78, pp.953-61, 2018.

R. Lacroix, C. Dubois, and A. S. Leroyer, Revisited role of microparticles in arterial and venous 29 thrombosis, J Thromb Haemost JTH, vol.11, issue.1, pp.24-35, 2013.

L. Vallier, S. Cointe, and R. Lacroix, Microparticles and Fibrinolysis, Semin Thromb Hemost, vol.31, pp.129-163, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01460632

S. Cointe, H. Souab, K. Bouriche, and T. , A new assay to evaluate microvesicle plasmin 33 generation capacity: validation in disease with fibrinolysis imbalance, J Extracell Vesicles, vol.34, p.1494482, 2018.

R. Lacroix, C. Judicone, and P. Poncelet, Impact of pre-analytical parameters on the 36 measurement of circulating microparticles: towards standardization of protocol, J Thromb 37 Haemost JTH, vol.10, pp.437-483, 2012.

F. Coumans, A. R. Brisson, and E. I. Buzas, Methodological Guidelines to Study Extracellular 1 Vesicles, Circ Res, vol.120, pp.1632-1680, 2017.

V. Shpacovitch and R. Hergenröder, Optical and surface plasmonic approaches to characterize 3 extracellular vesicles. A review, Anal Chim Acta, vol.1005, pp.1-15, 2018.

M. Laroche, C. Dunois, and A. M. Vissac, Update on functional and genetic laboratory assays for 5 the detection of platelet microvesicles, Platelets, vol.28, pp.235-276, 2017.

P. Poncelet, S. Robert, and N. Bailly, Tips and tricks for flow cytometry-based analysis and 7 counting of microparticles, Transfus Apher Sci Off J World Apher Assoc Off J Eur Soc 8 Haemapheresis, vol.53, pp.110-136, 2015.

J. P. Nolan and J. C. Jones, Detection of platelet vesicles by flow cytometry, Platelets, vol.28, pp.256-266, 2017.

Y. Hisada, A. C. Auriemma, and W. Alexander, Detection of tissue factor-positive extracellular 12 vesicles by laser scanning confocal microscopy, Thromb Res, vol.150, pp.65-72, 2017.

T. Exner, J. Joseph, and J. Low, A new activated factor X-based clotting method with improved 14 specificity for procoagulant phospholipid, Blood Coagul Fibrinolysis Int J Haemost Thromb, vol.15, pp.773-782, 2003.

W. Jy, L. L. Horstman, and J. J. Jimenez, Measuring circulating cell-derived microparticles, J 17 Thromb Haemost JTH, vol.2, pp.1842-51, 2004.

H. C. Hemker, P. Giesen, and R. Aldieri, The calibrated automated thrombogram (CAT): a 19 universal routine test for hyper-and hypocoagulability, Pathophysiol Haemost Thromb, vol.20, pp.249-53, 2002.

M. Hellum, R. Øvstebø, and A. Trøseid, Microparticle-associated tissue factor activity 22 measured with the Zymuphen MP-TF kit and the calibrated automated thrombogram assay

, Blood Coagul Fibrinolysis Int J Haemost Thromb, vol.23, pp.520-526, 2012.

Y. Hisada, W. Alexander, and R. Kasthuri, Measurement of microparticle tissue factor activity in 25 clinical samples: A summary of two tissue factor-dependent FXa generation assays, Thromb 26 Res, vol.139, pp.90-97, 2016.

K. Tatsumi, S. Antoniak, and D. M. Monroe, Evaluation of a new commercial assay to measure 28 microparticle tissue factor activity in plasma: communication from the SSC of the ISTH, J 29 Thromb Haemost, vol.12, pp.1932-1936, 2014.

L. Vallier, T. Bouriche, and A. Bonifay, New specific and highly sensitive procoagulant test to 31 measure tissue factor activity on microparticles, Res Pr Thromb Haemost Berlin, vol.1, p.1087, 2017.

Y. Hisada and N. Mackman, Measurement of tissue factor activity in extracellular vesicles from 33 human plasma samples. Res Pr Thromb Haemost, 2018.

E. Biró, K. N. Sturk-maquelin, and G. Vogel, Human cell-derived microparticles promote 36 thrombus formation in vivo in a tissue factor-dependent manner, J Thromb Haemost, vol.1, pp.37-2561, 2003.

R. J. Berckmans, A. Sturk, and L. M. Van-tienen, Cell-derived vesicles exposing coagulant tissue 1 factor in saliva, Blood, vol.117, pp.3172-80, 2011.