T. Ahmed, The MAL-ED cohort study in Mirpur, Clin. Infect. Dis, vol.59, p.25305298, 2014.

S. Subramanian, Persistent gut microbiota immaturity in malnourished Bangladeshi children, Nature, vol.510, p.24896187, 2014.

, World Health Organization Department of Nutrition for Health and Development, WHO child growth standards. Length/ height-for-age, weight-for-age, weight-for-length, weight-forheight and body mass index-for-age: methods and development, 2000.

L. V. Blanton, Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children, Science, vol.351, p.26912898, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439088

, Infant and Young Child feeding; fact sheet no, vol.342, pp.1-5, 2016.

L. Manikam, A systematic review of complementary feeding practices in South Asian infants and young children: The Bangladesh perspective, BMC Nutr, vol.3, p.56, 2017.

H. Sandige, M. J. Ndekha, A. Briend, P. Ashorn, and M. J. Manary, Home-based treatment of malnourished Malawian children with locally produced or imported ready-to-use food, J. Pediatr. Gastroenterol. Nutr, vol.39, p.15269617, 2004.

L. Gold, J. J. Walker, S. K. Wilcox, and S. Williams, Advances in human proteomics at high scale with the SOMAscan proteomics platform, Nat. Biotechnol, vol.29, p.22155539, 2012.

B. Lollo, F. Steele, and L. Gold, Beyond antibodies: New affinity reagents to unlock the proteome, Proteomics, vol.14, p.24395722, 2014.

J. Candia, Assessment of variability in the SOMAscan assay, Sci. Rep, vol.7, p.29079756, 2017.

S. Bartz, Severe acute malnutrition in childhood: Hormonal and metabolic status at presentation, response to treatment, and predictors of mortality, J. Clin. Endocrinol

. Metab, , vol.99, pp.2128-2137, 2014.

R. Overbeek, The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST)

, Nucleic Acids Res, vol.42, p.24293654, 2014.

D. A. Sela, The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome, Proc. Natl. Acad. Sci. U.S.A, vol.105, p.19033196, 2008.

T. Ahmed, Nutrition of children and women in Bangladesh: Trends and directions for the future, J. Health Popul. Nutr, vol.30, p.22524113, 2012.

L. L. Iannotti, Eggs in early complementary feeding and child growth: A randomized controlled trial, Pediatrics, vol.140, p.20163459, 2017.

W. R. Russell, Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein, Mol. Nutr. Food Res, vol.57, p.23349065, 2013.

D. Krause, The tryptophan metabolite 3-hydroxyanthranilic acid plays anti-inflammatory and neuroprotective roles during inflammation: Role of hemeoxygenase-1, Am. J. Pathol, vol.179, p.21855684, 2011.

L. Cervantes-barragan, Lactobacillus reuteri induces gut intraepithelial CD4 + CD8aa + T cells, Science, vol.357, p.28775213, 2017.

G. Das, An important regulatory role for CD4 + CD8 a a T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease, Proc. Natl. Acad. Sci. U.S.A, vol.100, p.12695566, 2003.

H. Cheroutre, M. M. Husain, and . Ctl, Living up to the challenge, Semin. Immunol, vol.25, p.24246226, 2013.

T. Sujino, Tissue adaptation of regulatory and intraepithelial CD4 + T cells controls gut inflammation, Science, vol.352, p.27256884, 2016.

R. A. Saxton and D. M. Sabatini, mTOR signaling in growth, metabolism, and disease, Cell, vol.169, p.28388417, 2017.

J. Yan, Gut microbiota induce IGF-1 and promote bone formation and growth, Proc. Natl. Acad. Sci. U.S.A, vol.113, p.27821775, 2016.

M. Schwarzer, Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition, Science, vol.351, p.26912894, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01449138

D. J. Millward, Amino acid scoring patterns for protein quality assessment, Br. J. Nutr, vol.108, issue.2, p.23107544, 2012.

P. L. Altman and D. S. Dittmer, Growth, Including Reproduction and Morphological Development, 1962.

M. R. Charbonneau, Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition, Cell, vol.164, p.26898329, 2016.

, Commercial Item Description: Ready-to-Use Therapeutic Food (RUTF, 2012.

I. Antonow-schlorke, Vulnerability of the fetal primate brain to moderate reduction in maternal global nutrient availability, Proc. Natl. Acad. Sci. U.S.A, vol.108, p.21252306, 2011.

K. Taniguchi and M. Karin, NF-kB, inflammation, immunity and cancer: Coming of age, Nat. Rev. Immunol, vol.18, p.29379212, 2018.

A. S. Raman, A sparse covarying unit that describes healthy and impaired human gut microbiota development, Science, vol.365, p.4735, 2019.

M. E. Ritchie, limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, p.25605792, 2015.

C. Simillion, R. Liechti, H. E. Lischer, V. Ioannidis, R. Bruggmann et al., produced microbial RNA-seq datasets. V.L.K. performed laser capture microdissection, V4-16S rDNA analysis of intestinal mucosa-associated bacterial community composition, RNA-seq-based characterization of mouse small intestinal mucosal gene expression, and histochemical assays of intestinal morphometry, BMC Bioinformatics, vol.18, p.151, 2017.

R. J. and R. L. , measured serum IGF-1 levels in gnotobiotic mice; and quantified leptin, IGF-1, and insulin in plasma obtained from children in the SAM trial. H.-W.C. generated microcomputed tomographic datasets from piglet femurs

R. D. , M. J. B-;-r, M. J. , J. L. , M. C. H-;-c et al., is currently a scientific sales representative at STEMCELL Technologies. Data and materials availability: V4-16S rDNA sequences in raw format prior to post-processing and data analysis, COPRO-seq, microbial RNA-seq, and proteomics datasets, plus shotgun sequencing datasets produced from human fecal DNA, cecal contents of gnotobiotic mice with a post-SAM MAM human donor community and cultured bacterial strains, have been deposited at the European Nucleotide Archive (ENA) under study accession no. PRJEB26419. SOMAscan-generated human plasma proteomic datasets have been deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE119641. All raw mass spectra for quantification of serum proteins in gnotobiotic piglets have been deposited in the MassIVE and ProteomeXchange data repositories under accession nos. MSV000082286 (MassIVE) and PXD009534 (ProteomeXchange), produced the quantitative proteomic datasets from plasma samples with DNA aptamer-based arrays, and

M. Mostafa and . Mahfuz,

M. Osterman, M. Iqbal-hossain, N. Islam, . Choudhury, A. Shafiqul et al.,

B. Semenkovich, R. J. Henrissat, R. L. Giannone, O. Hettich, M. Ilkayeva et al.,

S. Chen, C. A. Subramanian, M. F. Cowardin, . Meier, O. David et al.,

J. L. Gehrig, S. Venkatesh, H. Chang, M. C. Hibberd, L. Vanderlene et al.,