Interspecies Competition Impacts Targeted Manipulation of Human Gut Bacteria by Fiber-Derived Glycans - Aix-Marseille Université Accéder directement au contenu
Article Dans Une Revue Cell Année : 2019

Interspecies Competition Impacts Targeted Manipulation of Human Gut Bacteria by Fiber-Derived Glycans

Résumé

Development of microbiota-directed foods (MDFs) that selectively increase the abundance of beneficial human gut microbes, and their expressed functions, requires knowledge of both the bioactive components of MDFs and the mechanisms underlying microbe-microbe interactions. Here, gnotobiotic mice were colonized with a defined consortium of human-gut-derived bacterial strains and fed different combinations of 34 food-grade fibers added to a representative low-fiber diet consumed in the United States. Bioactive carbohydrates in fiber preparations targeting particular Bacteroides species were identified using community-wide quantitative proteomic analyses of bacterial gene expression coupled with forward genetic screens. Deliberate manipulation of community membership combined with administration of retrievable artificial food particles, consisting of paramagnetic microscopic beads coated with dietary polysaccharides, disclosed the contributions of targeted species to fiber degradation. Our approach, including the use of bead-based biosensors, defines nutrient-harvesting strategies that underlie, as well as alleviate, competition between Bacteroides and control the selectivity of MDF components.
Fichier principal
Vignette du fichier
main.pdf (2.67 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02588032 , version 1 (12-02-2024)

Identifiants

Citer

Michael Patnode, Zachary Beller, Nathan Han, Jiye Cheng, Samantha Peters, et al.. Interspecies Competition Impacts Targeted Manipulation of Human Gut Bacteria by Fiber-Derived Glycans. Cell, 2019, 179 (1), pp.59-73.e13. ⟨10.1016/j.cell.2019.08.011⟩. ⟨hal-02588032⟩
78 Consultations
6 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More