Y. M. Bar-on, R. Phillips, and R. Milo, The biomass distribution on Earth, Proc. Natl. Acad. Sci, vol.115, pp.6506-6511, 2018.

R. A. Laine, Invited Commentary: a calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10 12 structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems, Glycobiology, vol.4, pp.759-767, 1994.

N. D. Rawlings, Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation, Biochimie, vol.122, pp.5-30, 2016.

D. Ndeh, Complex pectin metabolism by gut bacteria reveals novel catalytic functions, Nature, vol.544, pp.65-70, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595600

R. L. Hahnke, Genome-based taxonomic classification of Bacteroidetes, Front. Microbiol, vol.7, p.2003, 2016.

F. Thomas, J. Hehemann, E. Rebuffet, M. Czjzek, and G. Michel, Environmental and gut Bacteroidetes: the food connection, Front. Microbiol, vol.2, p.93, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00925466

S. Sunagawa, Ocean plankton. Structure and function of the global ocean microbiome, Science, vol.348, p.1261359, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01253979

S. An, C. Couteau, F. Luo, J. Neveu, and M. S. Dubow, Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts, Microb. Ecol, vol.66, pp.850-860, 2013.

K. L. Anderson and A. A. Salyers, Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes, J. Bacteriol, vol.171, pp.3192-3198, 1989.

N. Terrapon, V. Lombard, H. J. Gilbert, and B. Henrissat, Automatic prediction of polysaccharide utilization loci in Bacteroidetes species, Bioinformatics, vol.31, pp.647-655, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01438994

J. M. Grondin, K. Tamura, G. Déjean, D. W. Abbott, and H. Brumer, Polysaccharide utilization loci: fueling microbial communities, J. Bacteriol, vol.199, pp.860-876, 2017.

E. Ficko-blean, Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria, Nat. Commun, vol.8, p.1685, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01899178

A. Rogowski, Glycan complexity dictates microbial resource allocation in the large intestine, Nat. Commun, vol.6, p.7481, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01439017

J. Larsbrink, A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes, Nature, vol.506, pp.498-502, 2014.

F. Cuskin, Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism, Nature, vol.517, pp.165-169, 2015.

N. Terrapon, PULDB: the expanded database of polysaccharide utilization loci, Nucleic Acids Res, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094620

M. J. Mcbride, Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis, Appl Env. Microbiol, vol.75, pp.6864-6875, 2009.

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

V. Lombard, A hierarchical classification of polysaccharide lyases for glycogenomics, Biochem. J, vol.432, pp.437-444, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539724

B. Henrissat, A classification of glycosyl hydrolases based on amino acid sequence similarities, Biochem. J, vol.280, pp.309-316, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00310263

H. Aspeborg, P. M. Coutinho, Y. Wang, H. Brumer, and B. Henrissat, Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5), BMC Evol. Biol, vol.12, p.186, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01785428

K. Mewis, N. Lenfant, V. Lombard, and B. Henrissat, Dividing the large glycoside hydrolase family 43 into subfamilies: a motivation for detailed enzyme characterization, Appl. Environ. Microbiol, vol.82, pp.1686-1692, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439073

F. J. St-john, J. M. González, and E. Pozharski, Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups, FEBS Lett, vol.584, pp.4435-4441, 2010.

M. R. Stam, E. G. Danchin, C. Rancurel, P. M. Coutinho, and B. Henrissat, Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of ?-amylase-related proteins, Protein Eng. Des. Sel, vol.19, pp.555-562, 2006.

T. Barbeyron, Matching the diversity of sulfated biomolecules: creation of a classification database for sulfatases reflecting their substrate specificity, PLoS ONE, vol.11, p.164846, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01409013

A. Cartmell, How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans, Proc. Natl Acad. Sci. USA, vol.114, pp.7037-7042, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802836

F. Renzi, Glycan-foraging systems reveal the adaptation of Capnocytophaga canimorsus to the dog mouth, vol.6, p.2507, 2015.

H. Finch, Comparison of distance measures in cluster analysis with dichotomous data, J. Data Sci, vol.3, pp.85-100, 2005.

K. Abe, Biochemical and structural analyses of a bacterial endo-?-1,2-glucanase reveal a new glycoside hydrolase family, J. Biol. Chem, vol.292, pp.7487-7506, 2017.

P. Biely, Microbial carbohydrate esterases deacetylating plant polysaccharides, Biotechnol. Adv, vol.30, pp.1575-1588, 2012.

A. Typas, M. Banzhaf, C. A. Gross, and W. Vollmer, From the regulation of peptidoglycan synthesis to bacterial growth and morphology, Nat. Rev. Microbiol, vol.10, pp.123-136, 2012.

E. C. Martens, N. M. Koropatkin, T. J. Smith, and J. I. Gordon, Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm, J. Biol. Chem, vol.284, pp.24673-24677, 2009.

T. Barbeyron, Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algaeassociated bacterium Zobellia galactanivorans DsijT, Environ. Microbiol, vol.18, pp.4610-4627, 2016.

N. P. Mcnulty, Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome, PLOS Biol, vol.11, p.1001637, 2013.

E. C. Martens, H. C. Chiang, and J. I. Gordon, Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont, Cell Host Microbe, vol.4, pp.447-457, 2008.

M. Wu, Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides, Science, vol.350, p.5992, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01439023

A. J. Glenwright, Structural basis for nutrient acquisition by dominant members of the human gut microbiota, Nature, vol.541, pp.407-411, 2017.

J. C. Mell and R. J. Redfield, Natural competence and the evolution of DNA uptake specificity, J. Bacteriol, vol.196, pp.1471-1483, 2014.

C. M. Fontes and H. J. Gilbert, Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates, Annu. Rev. Biochem, vol.79, pp.655-681, 2010.

L. Artzi, E. A. Bayer, and S. Moraïs, Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides, Nat. Rev. Microbiol, vol.15, pp.83-95, 2017.

C. M. Payne, Fungal cellulases, Chem. Rev, vol.115, pp.1308-1448, 2015.

A. Lammerts-van-bueren, A. Saraf, E. C. Martens, and L. Dijkhuizen, Differential metabolism of exopolysaccharides from probiotic Lactobacilli by the human gut symbiont Bacteroides thetaiotaomicron, Appl. Environ. Microbiol, vol.81, pp.3973-3983, 2015.

H. V. Scheller, P. Ulvskov, and . Hemicelluloses, Annu. Rev. Plant Biol, vol.61, pp.263-289, 2010.

, Essentials of Glycobiology 3rd edn, pp.2015-2017

D. Mohnen, Pectin structure and biosynthesis, Curr. Opin. Plant Biol, vol.11, pp.266-277, 2008.

. Van-der, &. Loo, and P. J. Mark, The stringdist package for approximate string matching, R. J, vol.6, pp.111-122, 2014.

I. Sela, H. Ashkenazy, K. Katoh, and T. Pupko, GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters, Nucleic Acids Res, vol.43, pp.7-14, 2015.

F. Lemoine, Renewing Felsenstein's phylogenetic bootstrap in the era of big data, Nature, vol.556, pp.452-456, 2018.
URL : https://hal.archives-ouvertes.fr/lirmm-02078445

A. Agresti, An Introduction to Categorical Data Analysis, 2018.

S. J. Haberman, The analysis of residuals in cross-classified Tables, Biometrics, vol.29, pp.205-220, 1973.

S. Lê, J. Josse, and F. Husson, FactoMineR: an R package for multivariate analysis, J. Stat. Softw, vol.25, pp.1-18, 2007.