S. S. Gambhir, Molecular imaging of cancer with positron emission tomography, Nat. Rev. Cancer, vol.2, p.2866, 2002.

W. A. Breeman, E. De-blois, H. Sze-chan, M. Konijnenberg, D. J. Kwekkeboom et al., 68 Ga-labeled DOTA-peptides and 68 Ga-labeled radiopharmaceuticals for positron emission tomography: Current status of research, clinical applications, and future perspectives, Semin. Nucl. Med, vol.41, pp.314-321, 2011.

I. Velikyan, Prospective of 68 Ga-radiopharmaceutical development, Theranostics, vol.4, pp.47-80, 2014.

M. Fani, J. P. André, and H. R. Maecke, 68 Ga-PET: A powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals, Contrast Media Mol. Imaging, vol.3, pp.53-63, 2008.

F. Rösch, 68 Ge/ 68 Ga generators: Past, present, and future, Theranostics, Gallium-68, and Other Radionuclides

R. P. Baum and F. Rösch, , vol.194, pp.3-16, 2013.

W. A. Breeman and A. M. Verbruggen, The 68 Ge/ 68 Ga generator has high potential

, Ga-labelled tracers in clinical routine?, Eur. J. Nucl. Med. Mol. Imaging, vol.34, pp.978-981, 2007.

H. Hartmann, K. Zöphel, R. Freudenberg, L. Oehme, M. Andreeff et al., Radiation exposure of patients during 68 Ga-DOTATOC PET/CT examinations, Nuklearmedizin, vol.48, pp.201-207, 2009.

M. Henze, J. Schuhmacher, P. Hipp, J. Kowalski, D. W. Becker et al., PET imaging of somatostatin receptors using [ 68 Ga]DOTA-D-Phe 1 -Tyr 3 -octreotide: First results in patients with meningiomas, J. Nucl. Med, vol.42, pp.1053-1056, 2001.

M. Hofmann, H. Maecke, A. Börner, E. Weckesser, P. Schöffski et al., Biokinetics and imaging with the somatostatin receptor PET radioligand 68 Ga-DOTATOC: Preliminary data, Eur J. Nucl. Med, vol.28, pp.1751-1757, 2001.

S. Froidevaux, A. N. Eberle, M. Christe, L. Sumanovski, A. Heppeler et al., Neuroendocrine tumor targeting: Study of novel gallium-labeled somatostatin radiopeptides in a rat pancreatic tumor model: Ga-DOTA somatostatin analogs for tumor targeting, Int. J. Cancer, vol.98, pp.930-937, 2002.

P. Spang, C. Herrmann, and F. Roesch, Bifunctional gallium-68 chelators: Past, present, and future, Semin. Nucl. Med, vol.46, pp.373-394, 2016.

K. Tanaka and K. Fukase, PET (positron emission tomography) imaging of biomolecules using metal-DOTA complexes: A new collaborative challenge by chemists, biologists, and physicians for future diagnostics and exploration of in vivo dynamics, Org. Biomol. Chem, vol.6, pp.815-828, 2008.

J. E. Shively, 18 F labeling for immuno-PET: Where speed and contrast meet, J. Nucl. Med, vol.48, pp.170-172, 2007.

A. Sanchez-crespo, Comparison of gallium-68 and fluorine-18 imaging characteristics in positron emission tomography, Appl. Radiat. Isotopes, vol.76, pp.55-62, 2013.

A. L. V?vere and P. J. Scott, Clinical applications of small-molecule PET radiotracers: Current progress and future outlook, Semin. Nucl. Med, vol.47, pp.429-453, 2017.

S. Fanti, C. Nanni, V. Ambrosini, M. D. Gross, D. Rubello et al., PET in genitourinary tract cancers, Q. J. Nucl. Med. Mol. Imag, vol.51, pp.260-271, 2007.

C. Nanni, L. Fantini, S. Nicolini, S. Fanti, and F. Non, PET. Clin. Radiol, vol.65, pp.536-548, 2010.

M. Fani, H. R. Maecke, and S. M. Okarvi, Radiolabeled peptides: Valuable tools for the detection and treatment of cancer, Theranostics, vol.2, pp.481-501, 2012.

W. W. Moses, Fundamental limits of spatial resolution in PET, Nucl. Instrum. Methods Phys. Res, vol.648, 2011.

M. Soret and S. L. Bacharach, Buvat, I. Partial-volume effect in PET tumor imaging, J. Nucl. Med, vol.48, pp.932-945, 2007.

N. J. Hoetjes, F. H. Van-velden, O. S. Hoekstra, C. J. Hoekstra, N. C. Krak et al., Partial volume correction strategies for quantitative FDG PET in oncology, Eur. J. Nucl. Med. Mol. Imaging, vol.37, pp.1679-1687, 2010.

X. Liu and R. Laforest, Quantitative small animal PET imaging with nonconventional nuclides, Nucl. Med. Biol, vol.36, pp.551-559, 2009.

J. A. Disselhorst, M. Brom, P. Laverman, C. H. Slump, O. C. Boerman et al., Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner, J. Nucl. Med, vol.51, pp.610-617, 2010.

A. Sánchez-crespo, P. Andreo, and S. A. Larsson, Positron flight in human tissues and its influence on PET image spatial resolution, Eur. J. Nucl. Med. Mol. Imaging, vol.31, pp.44-51, 2004.

D. Van-der-born, A. Pees, A. J. Poot, R. V. Orru, A. D. Windhorst et al., Fluorine-18 labelled building blocks for PET tracer synthesis, Chem. Soc. Rev, vol.46, pp.4709-4773, 2017.

C. Wängler, A. Kostikov, J. Zhu, J. Chin, B. Wängler et al., Silicon-[ 18 F]fluorine radiochemistry: Basics, applications and challenges, Appl. Sci, vol.2, pp.277-302, 2012.

V. Bernard-gauthier, C. Wängler, E. Schirrmacher, A. Kostikov, K. Jurkschat et al., Schirrmacher, R. 18 F-labeled silicon-based fluoride acceptors: Potential opportunities for novel positron emitting radiopharmaceuticals, Biomed. Res. Int, pp.1-20, 2014.

B. P. Burke, G. S. Clemente, and S. J. Archibald, Boron-18 F containing positron emission tomography radiotracers: Advances and opportunities, Contrast Media Mol. Imaging, vol.10, pp.96-110, 2015.

V. Bernard-gauthier, J. J. Bailey, Z. Liu, B. Wängler, C. Wängler et al., From unorthodox to established: The current status of 18 F-trifluoroborate-and 18 F-SiFA-based radiopharmaceuticals in PET nuclear imaging, Bioconjug. Chem, vol.27, pp.267-279, 2016.

D. M. Perrin, Organotrifluoroborates as prosthetic groups for single-step F18-labeling of complex molecules, Curr. Opin. Chem. Biol, vol.45, pp.86-94, 2018.

S. Vallabhajosula, 18 F-labeled positron emission tomographic radiopharmaceuticals in oncology: An overview of radiochemistry and mechanisms of tumor localization, Semin. Nucl. Med, vol.37, pp.400-419, 2007.

Y. Gu, D. Huang, Z. Liu, J. Huang, and W. Zeng, Labeling strategies with F-18 for positron emission tomography imaging, vol.7, pp.334-344, 2011.

O. Jacobson, D. O. Kiesewetter, and X. Chen, Fluorine-18 radiochemistry, labeling strategies and synthetic routes, Bioconjug. Chem, vol.26, pp.1-18, 2015.

S. Richter and F. Wuest, F-labeled peptides: The future is bright, Molecules, vol.19, pp.20536-20556, 2014.

X. Shao, R. Hoareau, B. G. Hockley, L. J. Tluczek, B. D. Henderson et al., Highlighting the versatility of the tracerlab synthesis modules. Part 1: Fully automated production of [ 18 F]labelled radiopharmaceuticals using a Tracerlab FXFN, J. Labelled Compd. Rad, vol.54, pp.292-307, 2011.

K. Kumar and A. Ghosh, 18 F-AlF labeled peptide and protein conjugates as positron emission tomography imaging pharmaceuticals, Bioconjug. Chem, vol.29, pp.953-975, 2018.

L. Cai, S. Lu, and V. W. Pike, Chemistry with [ 18 F]fluoride ion, Eur. J. Org. Chem, pp.2853-2873, 2008.

C. Zhan and D. A. Dixon, Hydration of the fluoride anion: Structures and absolute hydration free energy from first-principles electronic structure calculations, J. Phys. Chem. A, vol.108, pp.2020-2029, 2004.

F. A. Cotton and F. A. Cotton, Advanced Inorganic Chemistry, 1999.

R. G. Pearson, Hard and Soft Acids and Bases, J. Am. Chem. Soc, vol.85, pp.3533-3539, 1963.

R. D. Hancock and A. E. Martell, Ligand design for selective complexation of metal ions in aqueous solution, Chem. Rev, vol.89, pp.1875-1914, 1989.

J. P. André, H. Mäcke, A. Kaspar, B. Künnecke, M. Zehnder et al., In vivo and in vitro 27 Al NMR studies of aluminum(III) chelates of triazacyclononane polycarboxylate ligands, J. Inorg. Biochem, vol.88, pp.1-6, 2002.

E. Farkas, T. Fodor, F. K. Kálmán, and G. Tircsó, Tóth, I. Equilibrium and dissociation kinetics of the, React. Kinet. Mech. Cat, vol.116, pp.19-33, 2015.

R. Bruce-martin, Ternary complexes of Al 3+ and F ? with a third ligand, Coordin. Chem. Rev, vol.149, pp.23-32, 1996.

G. E. Smith, H. L. Sladen, S. C. Biagini, and P. J. Blower, Inorganic approaches for radiolabelling biomolecules with fluorine-18 for imaging with positron emission tomography, vol.40, pp.6196-6205, 2011.

D. M. Lemal, Perspective on fluorocarbon chemistry, J. Org. Chem, vol.69, pp.1-11, 2004.

A. M. Bond and G. T. Hefter, Critical Survey of Stability Constants and Related Thermodynamic Sata of Fluoride Complexes in Aqueous Solution, IUPAC Chemical Data Series, 1980.

B. Antonny and M. Chabre, Characterization of the aluminum and beryllium fluoride species which activate transducin. Analysis of the binding and dissociation kinetics, J. Biol. Chem, vol.267, pp.6710-6718, 1992.

L. Li, The biochemistry and physiology of metallic fluoride: Action, mechanism, and implications, Crit. Rev. Oral. Biol. Med, vol.14, pp.100-114, 2003.

W. J. Mcbride, R. M. Sharkey, H. Karacay, C. A. Souza, E. A. Rossi et al., A novel method of 18 F radiolabeling for PET, J. Nucl. Med, vol.50, pp.991-998, 2009.

D. Scheinberg, M. Strand, and O. Gansow, Tumor imaging with radioactive metal chelates conjugated to monoclonal antibodies, Science, vol.215, pp.1511-1513, 1982.

J. Nemes, I. Tóth, and L. Zékány, Formation kinetics of an aluminium(III)-ethylenedinitrilotetraacetate-fluoride mixed ligand complex, J. Chem. Soc, vol.0, pp.2707-2714, 1998.

R. Bruce-martin, Ternary hydroxide complexes in neutral solutions of Al 3+ and F ?, Biochem. Bioph. Res. Co, vol.155, pp.1194-1200, 1988.

P. Laverman, W. J. Mcbride, R. M. Sharkey, D. M. Goldenberg, and O. C. Boerman, Al 18 F labeling of peptides and proteins, J. Labelled Compd. Rad, vol.57, pp.219-223, 2014.

C. A. D'souza, W. J. Mcbride, R. M. Sharkey, L. J. Todaro, and D. M. Goldenberg, High-yielding aqueous 18 F-labeling of peptides via Al 18 F chelation, Bioconjug. Chem, vol.22, pp.1793-1803, 2011.

D. Shetty, S. Y. Choi, J. M. Jeong, J. Y. Lee, L. Hoigebazar et al., Stable aluminium fluoride chelates with triazacyclononane derivatives proved by X-ray crystallography and 18 F-labeling study, Chem. Commun, vol.47, pp.9732-9734, 2011.

W. J. Mcbride, C. A. Souza, R. M. Sharkey, H. Karacay, E. A. Rossi et al., Improved 18 F labeling of peptides with a fluoride-aluminum-chelate complex, Bioconjug. Chem, vol.21, pp.1331-1340, 2010.

P. Laverman, W. J. Mcbride, R. M. Sharkey, A. Eek, L. Joosten et al., A novel facile method of labeling octreotide with 18 F-fluorine, J. Nucl. Med, vol.51, pp.454-461, 2010.

P. Laverman, C. A. Souza, A. Eek, W. J. Mcbride, R. M. Sharkey et al., Optimized labeling of NOTA-conjugated octreotide with F-18, Tumor Biol, vol.33, pp.427-434, 2012.

W. J. Mcbride, C. A. Souza, H. Karacay, R. M. Sharkey, and D. M. Goldenberg, New lyophilized kit for rapid radiofluorination of peptides, Bioconjug. Chem, vol.23, pp.538-547, 2012.

J. M. Gillies, N. Najim, and J. Zweit, Analysis of metal radioisotope impurities generated in [ 18 O]H 2 O during the cyclotron production of fluorine-18, Appl. Radiat. Isotopes, vol.64, pp.431-434, 2006.

R. Schoffelen, R. M. Sharkey, D. M. Goldenberg, G. Franssen, W. J. Mcbride et al., Pretargeted immuno-positron emission tomography imaging of carcinoembryonic antigen-expressing tumors with a bispecific antibody and a 68 Ga-and 18 F-labeled hapten peptide in mice with human tumor xenografts, Mol. Cancer Ther, vol.9, pp.1019-1027, 2010.

K. Ley, J. Rivera-nieves, W. J. Sandborn, and S. Shattil, Integrin-based therapeutics: Biological basis, clinical use and new drugs, Nat. Rev. Drug Discov, vol.15, pp.173-183, 2016.

M. Nieberler, U. Reuning, F. Reichart, J. Notni, H. Wester et al., Exploring the role of RGD-recognizing integrins in cancer, vol.9, 2017.

F. Debordeaux, L. Chansel-debordeaux, J. Pinaquy, P. Fernandez, and J. Schulz, What about ? v ? 3 integrins in molecular imaging in oncology?, Nucl. Med. Biol, pp.31-46, 2018.

S. Liu, H. Liu, H. Jiang, Y. Xu, H. Zhang et al., One-step radiosynthesis of 18 F-AlF-NOTA-RGD 2 for tumor angiogenesis PET imaging, Eur. J. Nucl. Med. Mol. Imaging, vol.38, pp.1732-1741, 2011.

L. Lang, W. Li, N. Guo, Y. Ma, L. Zhu et al., Comparison study of [ 18 F]FAl-NOTA-PRGD 2 , [ 18 F]FPPRGD 2 , and [ 68 Ga]Ga-NOTA-PRGD 2 for PET imaging of U87MG tumors in mice, Bioconjug. Chem, vol.22, pp.2415-2422, 2011.

N. Guo, L. Lang, W. Li, D. O. Kiesewetter, H. Gao et al., Quantitative analysis and comparison study of [ 18 F]AlF-NOTA-PRGD 2 , [ 18 F]FPPRGD 2 and [ 68 Ga]Ga-NOTA-PRGD 2 using a reference tissue model, PLoS ONE, vol.7, 2012.

H. Gao, L. Lang, N. Guo, F. Cao, Q. Quan et al., PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer 18 F-AlF-NOTA-PRGD 2, Eur. J. Nucl. Med. Mol. Imaging, vol.39, pp.683-692, 2012.

Y. Cui, H. Liu, S. Liang, C. Zhang, W. Cheng et al., The feasibility of 18 F-AlF-NOTA-PRGD 2 PET/CT for monitoring early response of Endostar antiangiogenic therapy in human nasopharyngeal carcinoma xenograft model compared with 18 F-FDG, Oncotarget, vol.7, pp.27243-27254, 2016.

I. Dijkgraaf, S. Y. Terry, W. J. Mcbride, D. M. Goldenberg, P. Laverman et al., Imaging integrin alpha-V-beta-3 expression in tumors with an 18 F-labeled dimeric RGD peptide, Contrast Media Mol. Imaging, vol.8, pp.238-245, 2013.

L. Lang, Y. Ma, D. O. Kiesewetter, and X. Chen, Stability analysis of glutamic acid linked peptides coupled to NOTA through different chemical linkages, Mol. Pharm, vol.11, pp.3867-3874, 2014.

Y. Wei, Y. Gao, J. Zhang, Z. Fu, J. Zheng et al., Stereotactic comparison study of 18 F-alfatide and 18 F-FDG PET imaging in an LLC tumor-bearing C57BL/6 mouse model, Sci. Rep, 2016.

J. Liu, D. Wang, X. Meng, X. Sun, S. Yuan et al., 18 F-alfatide positron emission tomography may predict anti-angiogenic responses, Oncol. Rep, vol.40, pp.2896-2905, 2018.

J. Guo, L. Lang, S. Hu, N. Guo, L. Zhu et al., Comparison of three dimeric 18 F-AlF-NOTA-RGD tracers, Mol. Imaging Biol, vol.16, pp.274-283, 2014.

J. Guo, N. Guo, L. Lang, D. O. Kiesewetter, Q. Xie et al., 18 F-alfatide II and 18 F-FDG dual-tracer dynamic PET for parametric, early prediction of tumor response to therapy, J. Nucl. Med, vol.55, pp.154-160, 2014.

C. Wu, X. Yue, L. Lang, D. O. Kiesewetter, F. Li et al., Longitudinal PET imaging of muscular inflammation using 18 F-DPA-714 and 18 F-alfatide II and differentiation with tumors, Theranostics, vol.4, pp.546-555, 2014.

Y. Wei, X. Hu, Y. Gao, Z. Fu, W. Zhao et al., Noninvasive evaluation of metabolic tumor volume in Lewis lung carcinoma tumor-bearing C57BL/6 mice with micro-PET and the radiotracers 18 F-alfatide and 18 F-FDG: A comparative analysis, PLoS ONE, vol.10, 2015.

X. Bao, M. Wang, J. Luo, S. Wang, Y. Zhang et al., Optimization of early response monitoring and prediction of cancer antiangiogenesis therapy via noninvasive PET molecular imaging strategies of multifactorial bioparameters, Theranostics, vol.6, pp.2084-2098, 2016.

D. Shetty, J. M. Jeong, Y. J. Kim, J. Y. Lee, L. Hoigebazar et al., Development of a bifunctional chelating agent containing isothiocyanate residue for one step F-18 labeling of peptides and application for RGD labeling, Bioorg. Med. Chem, vol.20, pp.5941-5947, 2012.

L. Allott, C. Da-pieve, D. R. Turton, and G. Smith, A general [ 18 F]AlF radiochemistry procedure on two automated synthesis platforms, React. Chem. Eng, vol.2, pp.68-74, 2017.

B. Chaudhary, Y. S. Khaled, B. J. Ammori, and E. Elkord, Neuropilin 1: Function and therapeutic potential in cancer, Cancer Immunol. Immun, vol.63, pp.81-99, 2014.

R. Binetruy-tournaire, Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis, EMBO J, vol.19, pp.1525-1533, 2000.

G. Y. Perret, A. Starzec, N. Hauet, J. Vergote, M. Le-pecheur et al., In vitro evaluation and biodistribution of a 99m Tc-labeled anti-VEGF peptide targeting neuropilin-1, Nucl. Med. Biol, vol.31, pp.575-581, 2004.

H. Wu, H. Chen, D. Pan, Y. Ma, S. Liang et al., Imaging integrin ? v ? 3 and NRP-1 positive gliomas with a novel fluorine-18 labeled RGD-ATWLPPR heterodimeric peptide probe, Mol. Imaging Biol, vol.16, pp.781-792, 2014.

S. H. Hausner, N. Bauer, and J. L. Sutcliffe, In vitro and in vivo evaluation of the effects of aluminum [ 18 F]fluoride radiolabeling on an integrin ?V?6-specific peptide, Nucl. Med. Biol, vol.41, pp.43-50, 2014.

S. H. Hausner, D. L. Kukis, M. K. Gagnon, C. E. Stanecki, R. Ferdani et al., CB-TE2A chelates for targeted positron emission tomography with an alphaVbeta6-specific peptide, Mol. Imaging, vol.8, pp.111-121, 2009.

H. Akizawa, T. Uehara, and Y. Arano, Renal uptake and metabolism of radiopharmaceuticals derived from peptides and proteins, Adv. Drug Deliver. Rev, vol.60, pp.1319-1328, 2008.

D. A. Silver, I. Pellicer, W. R. Fair, W. D. Heston, and C. Cordon-cardo, Prostate-specific membrane antigen expression in normal and malignant human tissues, Clin. Cancer Res, vol.3, pp.81-85, 1997.

J. Ferlay, M. Colombet, I. Soerjomataram, T. Dyba, G. Randi et al., Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018, Eur. J. Cancer, vol.103, pp.356-387, 2018.

M. Eiber, W. P. Fendler, S. P. Rowe, J. Calais, M. S. Hofman et al., Prostate-specific membrane antigen ligands for imaging and therapy, J. Nucl. Med, vol.58, pp.67-76, 2017.

N. Malik, B. Zlatopolskiy, H. Machulla, S. N. Reske, and C. Solbach, One pot radiofluorination of a new potential PSMA ligand [Al 18 F]NOTA-DUPA-Pep: A new PSMA ligand [Al 18 F]NOTA-DUPA-Pep, J. Labelled Compd, vol.55, pp.320-325, 2012.

M. Eder, B. Wängler, S. Knackmuss, F. Legall, M. Little et al., Tetrafluorophenolate of HBED-CC: A versatile conjugation agent for 68 Ga-labeled small recombinant antibodies, Eur. J. Nucl. Med. Mol. Imaging, vol.35, pp.1878-1886, 2008.

N. Malik, B. Baur, G. Winter, S. N. Reske, A. J. Beer et al., Radiofluorination of PSMA-HBED via Al 18 F 2+ Chelation and Biological Evaluations In Vitro, Mol. Imaging Biol, vol.17, pp.777-785, 2015.

S. Boschi, J. T. Lee, S. Beykan, R. Slavik, L. Wei et al., Synthesis and preclinical evaluation of an Al 18 F radiofluorinated GLU-UREA-LYS(AHX)-HBED-CC PSMA ligand, Eur. J. Nucl. Med. Mol. Imaging, vol.43, pp.2122-2130, 2016.

N. V. Pillarsetty, T. Kalidindi, S. Carlin, B. Easwaramoorthy, A. Abbasi et al., Effect of specific activity on the uptake of [ 68 Ga]DKFZPSMA-11 in tumor and other organs, J. Nucl. Med, vol.57, p.528, 2016.

K. Kersemans, K. De-man, J. Courtyn, T. Van-royen, S. Piron et al., Automated radiosynthesis of Al[ 18 F]PSMA-11 for large scale routine use, Appl. Radiat, vol.135, pp.19-27, 2018.

J. Giglio, M. Zeni, E. Savio, and H. Engler, Synthesis of an Al 18 F radiofluorinated GLU-UREA-LYS(AHX)-HBED-CC PSMA ligand in an automated synthesis platform, EJNMMI Radiopharm. Chem, 2018.

F. Cleeren, J. Lecina, E. M. Billaud, M. Ahamed, A. Verbruggen et al., New chelators for low temperature Al 18 F-labeling of biomolecules, Bioconjug. Chem, vol.27, pp.790-798, 2016.

S. Lütje, G. M. Franssen, K. Herrmann, O. C. Boerman, M. Rijpkema et al., In vitro and in vivo characterization of a 18 F-AlF-labeled PSMA ligand for imaging of PSMA-expressing xenografts, J. Nucl. Med, 2019.

T. Liu, C. Liu, X. Xu, F. Liu, X. Guo et al., Preclinical evaluation and pilot clinical study of Al 18 F-PSMA-BCH for prostate cancer imaging, J. Nucl. Med, 2019.

M. Beer, M. Montani, J. Gerhardt, P. J. Wild, T. F. Hany et al., Profiling gastrin-releasing peptide receptor in prostate tissues: Clinical implications and molecular correlates, Prostate, vol.72, pp.318-325, 2012.

S. Nagasaki, Y. Nakamura, T. Maekawa, J. Akahira, Y. Miki et al., Immunohistochemical analysis of gastrin-releasing peptide receptor (GRPR) and possible regulation by estrogen receptor ?cx in human prostate carcinoma, Neoplasma, vol.59, pp.224-232, 2012.

R. Mansi, R. Minamimoto, H. Macke, and A. H. Iagaru, Bombesin-targeted PET of prostate cancer, J. Nucl. Med, vol.57, pp.67-72, 2016.

L. Baratto, H. Jadvar, and A. Iagaru, Prostate cancer theranostics targeting gastrin-releasing peptide receptors, Mol. Imaging Biol, vol.20, pp.501-509, 2018.

I. Dijkgraaf, G. M. Franssen, W. J. Mcbride, C. A. Souza, P. Laverman et al., PET of tumors expressing gastrin-releasing peptide receptor with an 18 F-labeled bombesin analog, J. Nucl. Med, vol.53, pp.947-952, 2012.

Y. Liu, X. Hu, H. Liu, L. Bu, X. Ma et al., A comparative study of radiolabeled bombesin analogs for the PET imaging of prostate cancer, J. Nucl. Med, vol.54, pp.2132-2138, 2013.

Z. Varasteh, I. Velikyan, G. Lindeberg, J. Sörensen, M. Larhed et al., Synthesis and characterization of a high-affinity NOTA-conjugated bombesin antagonist for GRPR-targeted tumor imaging, Bioconjug. Chem, vol.24, pp.1144-1153, 2013.

Z. Varasteh, O. Åberg, I. Velikyan, G. Lindeberg, J. Sörensen et al., In Vitro and In Vivo Evaluation of a 18 F-labeled high affinity NOTA conjugated bombesin antagonist as a PET ligand for GRPR-targeted tumor imaging, PLoS ONE, vol.8, 2013.

M. Yang, H. Gao, Y. Zhou, Y. Ma, Q. Quan et al., F-labeled GRPR agonists and antagonists: A comparative study in prostate cancer imaging, Theranostics, vol.1, pp.220-229, 2011.

D. Pan, Y. Yan, R. Yang, Y. P. Xu, F. Chen et al., PET imaging of prostate tumors with 18 F-Al-NOTA-MATBBN, Contrast Media Mol. Imaging, vol.9, pp.342-348, 2014.

K. L. Chatalic, G. M. Franssen, W. M. Van-weerden, W. J. Mcbride, P. Laverman et al., Preclinical comparison of Al 18 F-and 68 Ga-labeled gastrin-releasing peptide receptor antagonists for PET imaging of prostate cancer, J. Nucl. Med, vol.55, pp.2050-2056, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101654

G. Carlucci, A. Kuipers, H. J. Ananias, D. De-paula-faria, R. A. Dierckx et al., GRPR-selective PET imaging of prostate cancer using [ 18 F]-lanthionine-bombesin analogs, Peptides, vol.67, pp.45-54, 2015.

R. Rink, A. Arkema-meter, I. Baudoin, E. Post, A. Kuipers et al., To protect peptide pharmaceuticals against peptidases, J. Pharmacol. Toxicol. Methods, vol.61, pp.210-218, 2010.

R. Tugyi, G. Mezö, E. Fellinger, D. Andreu, and F. Hudecz, The effect of cyclization on the enzymatic degradation of herpes simplex virus glycoprotein D derived epitope peptide, J. Pept. Sci, vol.11, pp.642-649, 2005.

B. A. Gartrell, C. Tsao, and M. D. Galsky, The follicle-stimulating hormone receptor: A novel target in genitourinary malignancies, Urol. Oncol. Semin. Or. I, vol.31, pp.1403-1407, 2013.

A. Siraj, V. Desestret, M. Antoine, G. Fromont, M. Huerre et al., Expression of follicle-stimulating hormone receptor by the vascular endothelium in tumor metastases, BMC Cancer, vol.13, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00825697

Y. Xu, D. Pan, C. Zhu, Q. Xu, L. Wang et al., Pilot Study of a Novel 18 F-labeled FSHR probe for tumor imaging, Mol. Imaging Biol, vol.16, pp.578-585, 2014.

P. F. Agris, R. H. Guenther, H. Sierzputowska-gracz, L. Easter, W. Smith et al., Solution structure of a synthetic peptide corresponding to a receptor binding region of FSH (hFSH-beta 33-53), J. Protein Chem, vol.11, pp.495-507, 1992.

C. Zhu, Q. Xu, D. Pan, Y. Xu, P. Liu et al., Prostate cancer imaging of FSHR antagonist modified with a hydrophilic linker: Prostate cancer imaging of FSHR antagonist, Contrast Media Mol. Imaging, vol.11, pp.99-105, 2016.

D. Pan, Y. P. Xu, R. H. Yang, L. Wang, F. Chen et al., A new 68 Ga-labeled BBN peptide with a hydrophilic linker for GRPR-targeted tumor imaging, Amino Acids, vol.46, pp.1481-1489, 2014.

A. Perales-puchalt, N. Svoronos, M. R. Rutkowski, M. J. Allegrezza, A. J. Tesone et al., Follicle-stimulating hormone receptor is expressed by most ovarian cancer subtypes and is a safe and effective immunotherapeutic target, Clin. Cancer Res, vol.23, pp.441-453, 2017.

D. Skovgaard, M. Persson, and A. Kjaer, Imaging of prostate cancer using urokinase-type plasminogen activator receptor PET, PET Clin, vol.12, pp.243-255, 2017.

M. Persson, H. Liu, J. Madsen, Z. Cheng, and A. Kjaer, First 18 F-labeled ligand for PET imaging of uPAR: In vivo studies in human prostate cancer xenografts, Nucl. Med. Biol, vol.40, pp.618-624, 2013.

D. Skovgaard, M. Persson, and A. Kjaer, Urokinase plasminogen activator receptor-PET with 68 Ga-NOTA-AE105, PET Clin, vol.12, pp.311-319, 2017.

E. Christ, D. Wild, S. Ederer, M. Béhé, G. Nicolas et al., Glucagon-like peptide-1 receptor imaging for the localisation of insulinomas: A prospective multicentre imaging study, Lancet Diabetes Endo, vol.1, pp.115-122, 2013.

D. O. Kiesewetter, N. Guo, J. Guo, H. Gao, L. Zhu et al., Evaluation of an [ 18 F]AlF-NOTA analog of exendin-4 for imaging of GLP-1 receptor in insulinoma, Theranostics, vol.2, pp.999-1009, 2012.

C. F. Deacon, A. H. Johnsen, and J. J. Holst, Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo, J. Clin. Endocr. Metab, vol.80, pp.952-957, 1995.

D. Wild, M. Béhé, A. Wicki, D. Storch, B. Waser et al., Lys 40 (Ahx-DTPA-111 In)NH 2 ]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting, J. Nucl. Med, vol.47, pp.2025-2033, 2006.

M. Brom, W. J. Oyen, L. Joosten, M. Gotthardt, and O. C. Boerman, 68 Ga-labelled exendin-3, a new agent for the detection of insulinomas with PET, Eur. J. Nucl. Med. Mol. Imaging, vol.37, pp.1345-1355, 2010.

Q. Xu, C. Zhu, Y. Xu, D. Pan, P. Liu et al., Preliminary evaluation of [ 18 F]AlF-NOTA-MAL-Cys 39 -exendin-4 in insulinoma with PET, J. Drug Target, vol.23, pp.813-820, 2015.

M. Wang, H. Zhang, H. Wang, H. Feng, H. Deng et al., Development of [ 18 F]AlF-NOTA-NT as PET agents of neurotensin receptor-1 positive pancreatic cancer, Mol. Pharm, vol.15, pp.3093-3100, 2018.

M. Körner, B. Waser, O. Strobel, M. Büchler, and J. C. Reubi, Neurotensin receptors in pancreatic ductal carcinomas, EJNMMI Res, vol.5, 2015.

R. P. Baum, A. Singh, C. Schuchardt, H. R. Kulkarni, I. Klette et al., 177 Lu-3BP-227 for neurotensin receptor 1-targeted therapy of metastatic pancreatic adenocarcinoma: First clinical results, J. Nucl. Med, vol.59, pp.809-814, 2018.

W. J. Mcbride, R. M. Sharkey, and D. M. Goldenberg, Radiofluorination using aluminum-fluoride (Al 18 F), EJNMMI Res, vol.3, 2013.

G. A. Conlon and G. I. Murray, Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis: MMPs and tumour invasion, J. Pathol, vol.247, pp.629-640, 2019.

Q. Liu, D. Pan, C. Cheng, D. Zhang, A. Zhang et al., Development of a novel PET tracer [ 18 F]AlF-NOTA-C6 targeting MMP2 for tumor imaging, PLoS ONE, vol.10, 2015.

W. Wang, R. Shao, Q. Wu, S. Ke, J. Mcmurray et al., Targeting gelatinases with a near-infrared fluorescent cyclic His-Try-Gly-Phe peptide, Mol. Imaging Biol, vol.11, pp.424-433, 2009.

Y. Li, D. Zhang, Y. Shi, Z. Guo, X. Wu et al., Syntheses and preliminary evaluation of [ 18 F]AlF-NOTA-G-TMTP1 for PET imaging of high aggressive hepatocellular carcinoma, Contrast Media Mol. Imaging, vol.11, pp.262-271, 2016.

W. Yang, D. Luo, S. Wang, R. Wang, R. Chen et al., a novel tumor-homing peptide specifically targeting metastasis, Clin. Cancer Res, vol.14, pp.5494-5502, 2008.

I. Martínez-reza, L. Díaz, and R. García-becerra, Preclinical and clinical aspects of TNF-? and its receptors TNFR1 and TNFR2 in breast cancer, J. Biomed. Sci, vol.24, 2017.

H. Fu, H. Wu, X. Zhang, J. Huang, X. He et al., Pre-clinical study of a TNFR 1 -targeted 18 F probe for PET imaging of breast cancer, Amino Acids, vol.50, pp.409-419, 2018.

X. Gu, M. Jiang, D. Pan, G. Cai, R. Zhang et al., Preliminary evaluation of novel 18 F-AlF-NOTA-IF7 as a tumor imaging agent, J. Radioanal. Nucl. Ch, vol.308, pp.851-856, 2016.

O. Demmer, E. Gourni, U. Schumacher, H. Kessler, and H. Wester, PET imaging of CXCR4 receptors in cancer by a new optimized ligand, ChemMedChem, vol.6, pp.1789-1791, 2011.

E. Gourni, O. Demmer, M. Schottelius, C. D'alessandria, S. Schulz et al., PET of CXCR4 expression by a 68 Ga-labeled highly specific targeted contrast agent, J. Nucl. Med, vol.52, pp.1803-1810, 2011.

A. Poschenrieder, T. Osl, M. Schottelius, F. Hoffmann, M. Wirtz et al., First 18 F-labeled pentixafor-based imaging agent for PET imaging of CXCR4 expression In Vivo, vol.2, pp.85-93, 2016.

X. Yan, G. Niu, Z. Wang, X. Yang, D. O. Kiesewetter et al., 18 F]NOTA-T140 peptide for noninvasive visualization of CXCR4 expression, Mol. Imaging Biol, vol.18, pp.135-142, 2016.

O. Jacobson, I. D. Weiss, D. O. Kiesewetter, J. M. Farber, and X. Chen, PET of tumor CXCR4 expression with 4-18 F-T140, J. Nucl. Med, vol.51, pp.1796-1804, 2010.

F. Blasi, B. L. Oliveira, T. A. Rietz, N. J. Rotile, H. Day et al., Effect of chelate type and radioisotope on the imaging efficacy of 4 fibrin-specific PET probes, J. Nucl. Med, vol.55, pp.1157-1163, 2014.

K. L. Ciesienski, Y. Yang, I. Ay, D. B. Chonde, G. S. Loving et al., fibrin-targeted PET probes for the detection of thrombi, Mol. Pharm, vol.10, pp.1100-1110, 2013.

A. Martinez, L. M. Harel, F. Nguyen, Q. T. Létourneau, M. ;-d'oliviera-sousa et al., 18 F]F-complexation of DFH17, a NOTA-conjugated adrenomedullin analog, for PET imaging of pulmonary circulation, Nucl. Med. Biol, vol.67, pp.36-42, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02136102

O. Moisio, R. Siitonen, H. Liljenbäck, E. Suomela, S. Jalkanen et al., Exploring alternative radiolabeling strategies for sialic acid-binding immunoglobulin-like lectin 9 peptide: [ 68 Ga]Gaand [ 18 F]AlF-NOTA-Siglec-9, Molecules, vol.23, p.305, 2018.

R. Beard, N. Singh, C. Grundschober, A. D. Gee, and E. W. Tate, High-yielding 18 F radiosynthesis of a novel oxytocin receptor tracer, a probe for nose-to-brain oxytocin uptake in vivo, Chem. Commun, vol.54, pp.8120-8123, 2018.

L. Wang, Y. Liu, Y. Xu, J. Sheng, D. Pan et al., Age-related change of GLP-1R expression in rats can be detected by, Brain Res, vol.1698, pp.213-219, 2018.

W. J. Mcbride, C. A. Souza, R. M. Sharkey, and D. M. Goldenberg, The radiolabeling of proteins by the [ 18 F]AlF method, Appl. Radiat. Isotopes, vol.70, pp.200-204, 2012.

S. Lütje, G. M. Franssen, R. M. Sharkey, P. Laverman, E. A. Rossi et al., Anti-CEA antibody fragments labeled with [ 18 F]AlF for PET imaging of CEA-expressing tumors, Bioconjug. Chem, vol.25, pp.335-341, 2014.

S. Heskamp, P. Laverman, D. Rosik, F. Boschetti, W. T. Van-der-graaf et al., Imaging of human epidermal growth factor receptor type 2 expression with 18 F-labeled affibody molecule Z HER2:2395 in a mouse model for ovarian cancer, J. Nucl. Med, vol.53, pp.146-153, 2012.

M. Glaser, P. Iveson, S. Hoppmann, B. Indrevoll, A. Wilson et al., Three methods for 18 F labeling of the HER2-binding affibody molecule Z HER2:2891 including preclinical assessment, J. Nucl. Med, vol.54, 1981.

Y. Xu, Z. Bai, Q. Huang, Y. Pan, D. Pan et al., PET of HER2 expression with a novel 18 FAl labeled affibody, J. Cancer, vol.8, pp.1170-1178, 2017.

G. Kramer-marek, D. O. Kiesewetter, L. Martiniova, E. Jagoda, S. B. Lee et al., 18 F]FBEM-Z HER2:342 -affibody molecule-a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography, Eur. J. Nucl. Med. Mol. Imaging, vol.35, pp.1008-1018, 2008.

Z. Zhou, N. Devoogdt, M. R. Zalutsky, and G. Vaidyanathan, An efficient method for labeling single domain antibody fragments with 18 F using tetrazine-trans-cyclooctene ligation and a renal brush border enzyme-cleavable linker, Bioconjug. Chem, vol.29, pp.4090-4103, 2018.

G. Vaidyanathan, D. Mcdougald, J. Choi, M. Pruszynski, E. Koumarianou et al., Succinimidyl, vol.3, issue.4

, A residualizing label for 18 F-labeling of internalizing biomolecules, Org. Biomol. Chem, vol.14, pp.1261-1271, 2016.

Z. Zhou, G. Vaidyanathan, D. Mcdougald, C. M. Kang, I. Balyasnikova et al., Fluorine-18 labeling of the HER2-targeting single-domain antibody 2Rs15d using a residualizing label and preclinical evaluation, Mol. Imaging Biol, vol.19, pp.867-877, 2017.

Z. Miao, G. Ren, H. Liu, S. Qi, S. Wu et al., PET of EGFR expression with an 18 F-labeled affibody molecule, J. Nucl. Med, vol.53, pp.1110-1118, 2012.

X. Su, K. Cheng, J. Jeon, B. Shen, G. T. Venturin et al., Comparison of two site-specifically 18 F-labeled affibodies for PET imaging of EGFR positive tumors, Mol. Pharm, vol.11, pp.3947-3956, 2014.

D. N. Amin, M. R. Campbell, and M. M. Moasser, The role of HER3, the unpretentious member of the HER family, in cancer biology and cancer therapeutics, Semin. Cell Dev. Biol, vol.21, pp.944-950, 2010.

C. Da-pieve, L. Allott, C. D. Martins, A. Vardon, D. M. Ciobota et al., Efficient [ 18 F]AlF radiolabeling of Z HER3:8698 affibody molecule for imaging of HER3 positive tumors, Bioconjug. Chem, vol.27, pp.1839-1849, 2016.

G. Trotter, D. E. Meng, X. Mcquade, P. Rubins, D. Klimas et al., In Vivo imaging of the programmed death ligand 1 by 18 F PET, J. Nucl. Med, vol.58, pp.1852-1857, 2017.

C. Lu, Q. Jiang, M. Hu, C. Tan, H. Yu et al., Preliminary biological evaluation of 18 F-AlF-NOTA-MAL-Cys-Annexin V as a novel apoptosis imaging agent, Oncotarget, vol.8, pp.51086-51095, 2017.

F. Basuli, X. Zhang, M. R. Williams, J. Seidel, M. V. Green et al., One-pot synthesis and biodistribution of fluorine-18 labeled serum albumin for vascular imaging, Nucl. Med. Biol, pp.62-63, 2018.

J. Meyer, J. L. Houghton, P. Kozlowski, D. Abdel-atti, T. Reiner et al., 18 F-based pretargeted PET imaging based on bioorthogonal Diels-Alder click chemistry, Bioconjug. Chem, vol.27, pp.298-301, 2016.

X. Shi, K. Gao, H. Huang, and R. Gao, Pretargeted immuno-PET based on bioorthogonal chemistry for imaging EGFR positive colorectal cancer, Bioconjug. Chem, vol.29, pp.250-254, 2018.

F. Cleeren, J. Lecina, M. Ahamed, G. Raes, N. Devoogdt et al., Al 18 F-labeling of heat-sensitive biomolecules for positron emission tomography imaging, vol.7, pp.2924-2939, 2017.

A. Blykers, S. Schoonooghe, C. Xavier, K. D'hoe, D. Laoui et al., PET imaging of macrophage mannose receptor-expressing macrophages in tumor stroma using 18 F-radiolabeled camelid single-domain antibody fragments, J. Nucl. Med, vol.56, pp.1265-1271, 2015.

C. Xavier, A. Blykers, I. Vaneycken, M. Huyvetter, J. Heemskerk et al., Caveliers, V. 18 F-nanobody for PET imaging of HER2 overexpressing tumors, Nucl. Med. Biol, vol.43, pp.247-252, 2016.

G. Bala, A. Blykers, C. Xavier, B. Descamps, A. Broisat et al., Targeting of vascular cell adhesion molecule-1 by 18 F-labelled nanobodies for PET/CT imaging of inflamed atherosclerotic plaques, Eur. Heart J. Card. Img, vol.17, pp.1001-1008, 2016.

F. Cleeren, J. Lecina, J. Bridoux, N. Devoogdt, T. Tshibangu et al., Direct fluorine-18 labeling of heat-sensitive biomolecules for positron emission tomography imaging using the Al 18 F-RESCA method, Nat. Prot, vol.13, pp.2330-2347, 2018.

L. Hoigebazar, J. M. Jeong, J. Lee, D. Shetty, B. Y. Yang et al., Syntheses of 2-nitroimidazole derivatives conjugated with 1,4,7-triazacyclononane-N,N -diacetic acid labeled with F-18 using an aluminum complex method for hypoxia imaging, J. Med. Chem, vol.55, pp.3155-3162, 2012.

M. Lipowska, J. Klenc, D. Shetty, J. A. Nye, H. Shim et al., Al 18 F-NODA-butyric acid: Biological evaluation of a new PET renal radiotracer, Nucl. Med. Biol, vol.41, pp.248-253, 2014.

W. Wang, Z. Liu, and Z. Li, One-Step 18 F Labeling of non-peptidic bivalent integrin ? v ? 3 antagonist for cancer imaging, Bioconjug. Chem, vol.26, pp.24-28, 2015.

W. Wei, E. B. Ehlerding, X. Lan, Q. Luo, and W. Cai, The state of the art, Eur. J. Nucl. Med. Mol. Imaging, vol.45, pp.132-150, 2018.
URL : https://hal.archives-ouvertes.fr/inria-00606853

C. Chang, C. Chang, Y. Lo, M. Lin, C. Shen et al., Preparation and characterization of a novel Al 18 F-NOTA-BZA conjugate for melanin-targeted imaging of malignant melanoma, Bioorg. Med. Chem. Lett, vol.26, pp.4133-4139, 2016.

J. Song, X. Peng, L. Li, F. Yang, X. Zhang et al., Al 18 F-NODA benzothiazole derivatives as imaging agents for cerebrovascular amyloid in cerebral amyloid angiopathy, ACS Omega, vol.3, pp.13089-13096, 2018.

C. R. Fischer, A. Müller, B. Bochsler, Z. Rancic, P. Kaufmann et al., Assessment of an elastin binding molecule for PET imaging of atherosclerotic plaques, Am. J. Nucl. Med. Mol. Imaging, vol.3, pp.326-335, 2013.

J. M. Silvola, X. Li, J. Virta, P. Marjamäki, H. Liljenbäck et al., Aluminum fluoride-18 labeled folate enables in vivo detection of atherosclerotic plaque inflammation by positron emission tomography, Sci. Rep, vol.8, p.9720, 2018.

Q. Chen, X. Meng, P. Mcquade, D. Rubins, S. Lin et al., Synthesis and preclinical evaluation of folate-NOTA-Al 18 F for PET imaging of folate-receptor-positive tumors, Mol. Pharm, vol.13, pp.1520-1527, 2016.

Q. Chen, X. Meng, P. Mcquade, D. Rubins, S. Lin et al., Folate-PEG-NOTA-Al 18 F: A new folate based radiotracer for PET imaging of folate receptor-positive tumors, Mol. Pharm, vol.14, pp.4353-4361, 2017.

G. Courtney-martin, C. Kosar, A. Campbell, Y. Avitzur, P. W. Wales et al., Plasma aluminum concentrations in pediatric patients receiving long-term parenteral nutrition, J. Parenter. Enteral. Nutr, vol.39, pp.578-585, 2015.

K. M. Gura, Aluminum contamination in parenteral products, Curr. Opin. Clin. Nutr. Metab. Care, vol.17, pp.551-557, 2014.

D. Food and . Administration, Aluminum in large and small volume parenterals used in total parenteral nutrition, p.30, 2019.

W. Wan, N. Guo, D. Pan, C. Yu, Y. Weng et al., First Experience of 18 F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination, J. Nucl. Med, vol.54, pp.691-698, 2013.

S. Gao, H. Wu, W. Li, S. Zhao, X. Teng et al., A pilot study imaging integrin ? v ? 3 with RGD PET/CT in suspected lung cancer patients, Eur. J. Nucl. Med. Mol. Imaging, vol.42, pp.2029-2037, 2015.

X. Luan, Y. Huang, S. Gao, X. Sun, S. Wang et al., 18 F-alfatide PET/CT may predict short-term outcome of concurrent chemoradiotherapy in patients with advanced non-small cell lung cancer, Eur. J. Nucl. Med. Mol. Imaging, vol.43, pp.2336-2342, 2016.

A. J. Beer and I. Dijkgraaf, Editorial European Journal of Nuclear Medicine and Molecular Imaging, Eur. J. Nucl. Med. Mol. Imaging, vol.44, pp.284-285, 2017.

H. Zhang, N. Liu, S. Gao, X. Hu, W. Zhao et al., Can an 18 F-AlF-NOTA-PRGD 2 PET/CT scan predict treatment sensitivity to concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma?, J. Nucl. Med, vol.57, pp.524-529, 2016.

Y. Zhou, S. Gao, Y. Huang, J. Zheng, Y. Dong et al., A pilot study of 18 F-alfatide PET/CT imaging for detecting lymph node metastases in patients with non-small cell lung cancer, 2017.

W. Cheng, Z. Wu, S. Liang, H. Fu, S. Wu et al., Comparison of 18 F-AlF-NOTA-PRGD 2 and 18 F-FDG uptake in lymph node metastasis of differentiated thyroid cancer, PLoS ONE, vol.9, p.100521, 2014.

Y. Dong, Y. Wei, G. Chen, Y. Huang, P. Song et al., Relationship between clinicopathological characteristics and PET/CT uptake in esophageal squamous cell carcinoma: [ 18 F]Alfatide versus [ 18 F]FDG, Mol. Imaging Biol, vol.21, pp.175-182, 2019.

L. Li, L. Ma, D. Shang, Z. Liu, Q. Yu et al., Pretreatment PET/CT imaging of angiogenesis based on 18 F-RGD tracer uptake may predict antiangiogenic response, Eur. J. Nucl. Med. Mol. Imaging, vol.46, pp.940-947, 2019.

B. Mi, C. Yu, D. Pan, M. Yang, W. Wan et al., Pilot prospective evaluation of 18 F-alfatide II for detection of skeletal metastases, Theranostics, vol.5, pp.1115-1121, 2015.

C. Yu, D. Pan, B. Mi, Y. Xu, L. Lang et al., 18 F-Alfatide II PET/CT in healthy human volunteers and patients with brain metastases, Eur. J. Nucl. Med. Mol. Imaging, vol.42, pp.2021-2028, 2015.

J. Wu, S. Wang, X. Zhang, Z. Teng, J. Wang et al., 18 F-Alfatide II PET/CT for identification of breast cancer: A preliminary clinical study, J. Nucl. Med, vol.59, pp.1809-1816, 2018.

X. Du, Y. Zhang, L. Chen, B. Mi, Q. You et al., Comparing the differential diagnostic values of 18 F-alfatide II PET/CT between tuberculosis and lung cancer patients, Contrast Media Mol. Imaging, pp.1-6, 2018.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI