D. W. Abbott and A. B. Boraston, Structural biology of pectin degradation by, Enterobacteriaceae. Microbiol. Mol. Biol. Rev, vol.72, pp.301-316, 2008.

S. Anders, P. T. Pyl, and W. Huber, HTSeq -a Python framework to work with high-throughput sequencing data, Bioinformatics, vol.31, pp.166-169, 2014.

A. As, S. Mellerowicz, E. Love, J. Segerman, B. Ohmiya et al., Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis, Plant J, vol.45, pp.144-165, 2006.

K. Aoki, Y. Ogata, and D. Shibata, Approaches for extracting practical information from gene co-expression networks in plant biology, Plant Cell Physiol, vol.48, pp.381-390, 2007.

H. Aspeborg, J. Schrader, and P. M. Coutinho, Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen, Plant Physiol, vol.137, pp.983-997, 2005.

M. A. Atmodjo, Y. Sakuragi, X. Zhu, A. J. Burrell, S. S. Mohanty et al., Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan: galacturonosyltransferase complex, Proc. Natl Acad. Sci. USA, vol.108, pp.20225-20230, 2011.

Y. Bai, D. Wu, F. Liu, Y. Li, P. Chen et al., Characterization and functional analysis of the poplar Pectate Lyase-Like gene PtPL1-18 reveal its role in the development of vascular tissues, Front. Plant Sci, vol.8, p.1123, 2017.

P. Barral, C. Su-arez, E. Batanero, C. Alfonso, J. D. Alch-e et al., An olive pollen protein with allergenic activity, Ole-e -10, defines a novel family of carbohydrate-binding modules and is potentially implicated in pollen germination, Biochem. J, vol.390, pp.77-84, 2005.

D. Basu, L. Tian, W. Wang, S. Bobbs, H. Herock et al., A small multigene hydroxyproline-O-galactosyltransferase family functions in arabinogalactan-protein glycosylation, growth and development in A. thaliana, BMC Plant Biol, vol.15, p.295, 2015.

M. Benedetti, I. Verrascina, D. Pontiggia, F. Locci, B. Mattei et al., Four A. thaliana berberine bridge enzyme-like proteins are specific oxidases that inactivate the elicitor-active oligogalacturonides, Plant J, vol.94, pp.260-273, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01758307

S. Berthet, N. Demont-caulet, and B. Pollet, Disruption of LAC-CASE4 and 17 results in tissue-specific alterations to lignification of A. thaliana stems, Plant Cell, vol.23, pp.1124-1137, 2011.

A. K. Biswal, K. Soeno, and M. L. Gandla, Aspen pectate lyase PtxtPL1-27 mobilizes matrix polysaccharides from woody tissues and improves saccharification yield, Biotechnol. Biofuels, vol.7, p.11, 2014.

A. K. Biswal, Z. Hao, and S. Pattathil, Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock, Biotechnol. Biofuels, vol.8, p.41, 2015.

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, vol.30, pp.2114-2120, 2014.

A. B. Boraston, D. N. Bolam, H. J. Gilbert, and G. J. Davies, Carbohydrate-binding modules: fine-tuning polysaccharide recognition, Biochem. J, vol.382, pp.769-781, 2004.

P. Both, L. Sobczak, C. Breton, S. Hann, K. Nobauer et al., Distantly related plant and nematode core alpha1,3 fucosyltransferases display similar trends in structure-function relationships, Glycobiology, vol.21, pp.1401-1415, 2011.

J. R. Bromley, M. Busse-wicher, T. Tryfona, J. C. Mortimer, Z. Zhang et al., GUX1 and GUX2 glucuronyltransferases decorate distinct domains of glucuronoxylan with different substitution patterns, Plant J, vol.74, pp.423-434, 2013.

D. Brown, R. Wightman, Z. Zhang, L. D. Gomez, I. Atanassov et al., A. thaliana genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall, Plant J, vol.66, pp.401-413, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02297002

M. Busse-wicher, T. C. Gomes, T. Tryfona, N. Nikolovski, K. Stott et al., The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a two fold helical screw in the secondary plant cell wall of A. thaliana, Plant J, vol.79, pp.492-506, 2014.

B. L. Cantarel, P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard et al., The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics, Nucleic Acids Res, vol.37, pp.233-238, 2009.

M. J. Christians, D. J. Gingerich, M. Hansen, B. M. Binder, J. J. Kieber et al., The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels, Plant J, vol.57, pp.332-345, 2009.

P. M. Coutinho, E. Deleury, and B. Henrissat, The families of carbohydrate-active enzymes in the genomic era, J. Appl. Glycosci, vol.50, pp.241-244, 2003.

B. Daniel, T. Pavkov-keller, and B. Steiner, Oxidation of monolignols by members of the Berberine Bridge Enzyme family suggests a role in cell wall metabolism, J. Biol. Chem, vol.290, pp.18770-18781, 2015.

M. Daou and C. B. Faulds, Glyoxal oxidases: their nature and properties, World J. Microbiol. Biotechnol, vol.33, p.87, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01669106

Y. Deng, W. Wang, W. Q. Li, C. Xia, H. Z. Liao et al., MALE GAMETOPHYTE DEFECTIVE 2, encoding a sialyltransferaselike protein, is required for normal pollen germination and pollen tube growth in A. thaliana, J. Integr. Plant Biol, vol.52, pp.829-843, 2010.

M. Derba-maceluch, T. Awano, and J. Takahashi, Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood, New Phytol, vol.205, pp.666-681, 2015.

A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski et al., STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

C. Domingo, K. Roberts, N. J. Stacey, I. Connerton, F. Ruiz-teran et al., A pectate lyase from Zinnia elegans is auxin inducible, Plant J, vol.13, pp.17-28, 1998.

M. Dumont, A. Lehner, S. Bouton, M. C. Kiefer-meyer, A. Voxeur et al., The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein, Ann. Bot, vol.114, pp.1177-1188, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204135

J. Egelund, B. L. Petersen, M. S. Motawia, I. Damager, A. Faik et al., A. thaliana RGXT1 and RGXT2 encode Golgi-localized (1,3)-a-D-xylosyltransferases involved in the synthesis of pectic rhamnogalacturonan-II, Plant Cell, vol.18, pp.2593-2607, 2006.

T. Engelsdorf and T. Hamann, An update on receptor-like kinase involvement in the maintenance of plant cell wall integrity, Ann. Bot, vol.114, pp.1339-1347, 2014.

H. N. Englyst and J. H. Cummings, Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates, Analyst, vol.109, pp.937-942, 1984.

N. Faria-blanc, J. C. Mortimer, and P. Dupree, A transcriptomic analysis of xylan mutants does not support the existence of a secondary cell wall integrity system in A, thaliana. Front. Plant Sci, vol.9, pp.1-12, 2018.

T. M. Filisetti-cozzi and N. C. Carpita, Measurement of uronic acids without interference from neutral sugars, Anal. Biochem, vol.197, pp.157-162, 1991.

R. M. Fischl, J. Stadlmann, J. Grass, F. Altmann, and R. Eonard, The two endo-b-N-acetylglucosaminidase genes from A. thaliana encode cytoplasmic enzymes controlling free N-glycan levels, Plant Mol. Biol, vol.77, pp.275-284, 2011.

Z. Fujimoto, Structure and function of carbohydrate-binding module families 13 and 42 of Glycoside Hydrolases, comprising b-Trefoil fold, Biosci. Biotechnol. Biochem, vol.77, pp.1363-1371, 2013.

S. Galindo-trigo, J. E. Gray, and L. M. Smith, Conserved roles of CrRLK1L receptor-Like kinases in cell expansion and reproduction from algae to angiosperms, Front. Plant Sci, vol.7, p.1269, 2016.

M. L. Gandla, M. Derba-maceluch, X. Liu, L. Gerber, E. R. Master et al., Expression of a fungal glucuronoyl esterase in Populus: effects on wood properties and saccharification efficiency, Phytochemistry, vol.112, pp.210-220, 2015.

J. Geisler-lee, M. Geisler, and P. M. Coutinho, Poplar carbohydrate-active enzymes. Gene identification and expression analyses, Plant Physiol, vol.140, pp.946-962, 2006.

R. C. Gentleman, V. J. Carey, and D. M. Bates, Bioconductor: open software development for computational biology and bioinformatics, 2004.

, Genome Biol, vol.5, p.80

L. Gerber, B. Zhang, M. Roach, U. Rende, A. Gorzsas et al., Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers, New Phytol, vol.203, pp.1220-1230, 2014.

S. Gille, V. Sharma, E. E. Baidoo, J. D. Keasling, H. V. Scheller et al., Arabinosylation of a Yariv-precipitable cell wall polymer impacts plant growth as exemplified by the A. thaliana glycosyltransferase mutant ray1, Mol. Plant, vol.6, pp.1369-1372, 2013.

T. Goh, S. Joi, T. Mimura, and H. Fukaki, The establishment of asymmetry in A. thaliana lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins, Development, vol.139, pp.883-893, 2012.

D. Grattapaglia, C. Plomion, M. Kirst, and R. R. Sederoff, Genomics of growth traits in forest trees, Curr. Opin. Plant Biol, vol.12, pp.148-156, 2009.

M. Gray-mitsumune, E. J. Mellerowicz, H. Abe, S. Mcqueen-mason, A. Winz-ell et al., Expansins abundant in secondary xylem belong to Subgroup A of the a-expansin gene family, Plant Physiol, vol.135, pp.1552-1564, 2004.

M. Gray-mitsumune, K. Blomquist, S. Mcqueen-mason, T. T. Teeri, B. Sundberg et al., Ectopic expression of a wood-abundant expansin PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen, Plant Biotechnol. J, vol.6, pp.62-72, 2008.

X. Guan, H. Zhao, Y. Xu, and Y. Wang, Transient expression of glyoxal oxidase from the Chinese wild grapeVitis pseudoreticulata can suppress powdery mildew in a susceptible genotype, Protoplasma, vol.248, pp.415-423, 2010.

D. Guillen, S. Sanchez, and R. Rodriguez-sanoja, Carbohydrate-binding domains: multiplicity of biological roles, Appl. Microbiol. Biotechnol, vol.85, pp.1241-1249, 2010.

J. Harholt, J. K. Jensen, and Y. Verhertbruggen, ARAD proteins associated with pectic Arabinan biosynthesis form complexes when transiently overexpressed in planta, Planta, vol.236, pp.115-128, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01848274

C. A. Hefer, E. Mizrachi, A. A. Myburg, C. J. Douglas, and S. D. Mansfield, Comparative interrogation of the developing xylem transcriptomes of two wood-forming species: Populus trichocarpa and Eucalyptus grandis, New Phytol, vol.206, pp.1391-1405, 2015.

E. W. Van-hellemond, N. G. Leferink, D. P. Heuts, M. W. Fraaije, and W. J. Van-berkel, Occurrence and biocatalytic potential of carbohydrate oxidases, Adv. Appl. Microbiol, vol.60, pp.17-54, 2006.

C. Hernandez-blanco, D. X. Feng, J. Hu, A. Sanchez-vallet, L. Deslandes et al., Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance, Plant Cell, vol.19, pp.890-903, 2007.

S. R. Herron, J. A. Benen, R. D. Scavetta, J. Visser, and F. Jurnak, Structure and function of pectic enzymes: virulence factors of plant pathogens, Proc. Natl Acad. Sci. USA, vol.97, pp.8762-8769, 2000.

J. L. Hill, . Jr, M. B. Hammudi, and M. Tien, The A. thaliana cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry, Plant Cell, vol.26, pp.4834-4842, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02317266

M. E. Himmel, S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos et al., Biomass recalcitrance: engineering plants and enzymes for biofuels production, Science, vol.315, pp.804-807, 2007.

M. Hinchee, W. Rottmann, L. Mullinax, C. Zhang, S. Chang et al., Short-rotation woody crops for bioenergy and biofuels applications, In vitro Cell. Dev. Biol. Plant, vol.45, pp.619-629, 2009.

J. Immanen, K. Nieminen, and O. Smolander, Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity, Curr. Biol, vol.26, 1990.

J. K. Jensen, H. Kim, J. C. Cocuron, R. Orler, J. Ralph et al., The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in A. thaliana, Plant J, vol.66, pp.387-400, 2011.

J. K. Jensen, N. R. Johnson, and C. G. Wilkerson, A. thaliana IRX10 and two related proteins from Psyllium and Physcomitrella patens are xylan xylosyltransferases, Plant J, vol.80, pp.207-215, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00720500

N. Jiang, R. E. Wiemels, A. Soya, R. Whitley, M. Held et al., Composition, assembly, and trafficking of a wheat xylan synthase complex, Plant Physiol, vol.170, pp.1999-2023, 2016.

K. L. Johnson, B. J. Jones, A. Bacic, and C. J. Schultz, The fasciclinlike arabinogalactan proteins of A. thaliana. A multigene family of putative cell adhesion molecules, Plant Physiol, vol.133, pp.1911-1925, 2003.

J. Y. Kang, Y. Hong, H. Ashida, N. Shishioh, Y. Murakami et al., PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol, J. Biol. Chem, vol.280, pp.9489-9497, 2005.

I. H. Kang, J. G. Steffen, M. F. Portereiko, A. Lloyd, and G. N. Drews, The AGL62 MADS domain protein regulates cellularization during endosperm development in A. thaliana, Plant Cell, vol.20, pp.635-647, 2008.

J. S. Klutts, S. B. Levery, and T. L. Doering, A b-1, 2-xylosyltransferase from Cryptococcus neoformans defines a new family of glycosyltransferases, J. Biol. Chem, vol.282, pp.17890-17899, 2007.

E. Knoch, A. Dilokpimol, and T. Tryfona, A b-glucuronosyltransferase from A. thaliana involved in biosynthesis of type II arabinogalactan has a role in cell elongation during seedling growth, Plant J, vol.76, pp.1016-1029, 2013.

Y. Kong, G. Zhou, U. Avci, X. Gu, C. Jones et al., Two poplar glycosyltransferase genes, PdGATL1.1 and PdGATL1.2, are functional orthologs to PARVUS/ AtGATL1 in A. thaliana, Mol. Plant, vol.2, pp.1040-1050, 2009.

E. Kopylova, L. No-e, and H. Touzet, SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data, Bioinformatics, vol.28, pp.3211-3217, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00748990

L. V. Kozlova, N. E. Mokshina, A. R. Nazipova, and T. A. Gorshkova, Systemic use of "limping" enzymes in plant cell walls, Russ. J. Plant Physiol, vol.64, pp.808-821, 2017.

M. Kumar, S. Thammannagowda, and V. Bulone, An update on the nomenclature for the cellulose synthase genes in Populus, Trends Plant Sci, vol.14, pp.248-254, 2009.

S. Kumar, G. Stecher, and K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol, vol.33, pp.1870-1874, 2016.

M. J. Laskowski, K. A. Dreher, M. A. Gehring, S. Abel, A. L. Gensler et al., FQR1, a novel primary auxin response gene, encodes a flavin mononucleotide-binding quinone reductase, Plant Physiol, vol.128, pp.578-590, 2002.

C. Lee, Q. Teng, W. Huang, R. Zhong, and Z. H. Ye, Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase, Plant Cell Physiol, vol.50, pp.1075-1089, 2009.

C. H. Lee, Q. C. Teng, R. Q. Zhong, and Z. H. Ye, Molecular dissection of xylan biosynthesis during wood formation in poplar, Mol. Plant, vol.4, pp.730-747, 2011.

C. Lee, Q. Teng, R. Zhong, Y. Yuan, M. Haghighat et al., Three A. thaliana DUF579 domain-containing GXM proteins are methyltransferases catalyzing 4-O methylation of glucuronic acid on xylan, Plant Cell Physiol, vol.53, pp.1934-1949, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01589366

A. Levasseur, E. Drula, V. Lombard, P. M. Coutinho, and B. Henrissat, Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes, Biotechnol. Biofuels, vol.6, p.41, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268121

C. Li, Z. Guan, D. Liu, and C. R. Raetz, Pathway for lipid A biosynthesis in A. thaliana resembling that of Escherichia coli, Proc. Natl Acad. Sci. USA, vol.108, pp.11387-11392, 2011.

Q. Li, D. Min, J. P. Wang, .. Peszlen, I. Horvath et al., Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood, Tree Physiol, vol.31, pp.226-236, 2011.

Q. Li, Y. C. Lin, Y. H. Sun, J. Song, H. Chen et al., Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa, Proc. Natl Acad. Sci. USA, vol.109, pp.14699-14704, 2012.

X. L. Liu, L. Liu, Q. K. Niu, C. Xia, K. Z. Yang et al., MALE GAMETOPHYTE DEFECTIVE 4 encodes a rhamnogalacturonan II xylosyltransferase and is important for growth of pollen tubes and roots in A. thaliana, Plant J, vol.65, pp.647-660, 2011.

Y. Liu, M. Wei, C. Hou, T. Lu, L. Liu et al., Functional characterization of Populus PsnSHN2 in coordinated regulation of secondary wall components in tobacco, Sci. Rep, vol.7, p.42, 2017.

A. J. Liwanag, B. Ebert, Y. Verhertbruggen, E. A. Rennie, C. Rautengarten et al., Pectin biosynthesis: GALS1 in A. thaliana is a b -1,4-galactan b -1,4-galactosyltransferase, Plant Cell, vol.24, pp.5024-5036, 2012.

V. Lombard, T. Bernard, C. Rancurel, H. Brumer, P. M. Coutinho et al., A hierarchical classification of polysaccharide lyases for glycogenomics, Biochem. J, vol.432, pp.437-444, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539724

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

M. I. Love, W. Huber, and S. Ander, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

S. Lu, Q. Li, and H. Wei, Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa, Proc. Natl Acad. Sci. USA, vol.110, pp.10848-10853, 2013.

A. S. Luis, J. Briggs, and X. Zhang, Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides, Nat. Microbiol, vol.3, pp.210-219, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094616

V. J. Maloney and S. D. Mansfield, Characterization and varied expression of a membrane-bound endo-b-1, 4-glucanase in hybrid poplar, Plant Biotechnol. J, vol.8, pp.294-307, 2010.

H. E. Mcfarlane, A. Doring, and S. Persson, The cell biology of cellulose synthesis, Annu. Rev. Plant Biol, vol.65, pp.69-94, 2014.

E. J. Mellerowicz and T. Gorshkova, Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell wall structure and composition, J. Exp. Bot, vol.63, pp.551-565, 2012.

E. J. Mellerowicz and B. Sundberg, Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties, Curr. Opin. Plant Biol, vol.11, pp.293-300, 2008.

E. J. Mellerowicz, M. Baucher, B. Sundberg, and W. Bojeran, Unraveling cell wall formation in the woody dicot stem, Plant Mol. Biol, vol.47, pp.239-274, 2001.

F. J. Molina-hidalgo, A. R. Franco, C. Villatoro, L. Medina-puche, J. A. Mercado et al., The strawberry (Fragaria 9 ananassa) fruitspecific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae, J. Exp. Bot, vol.64, pp.1471-1483, 2013.

J. C. Mortimer, G. P. Miles, and D. M. Brown, Absence of branches from xylan in A. thaliana gux mutants reveals potential for simplification of lignocellulosic biomass, Proc. Natl Acad. Sci. USA, vol.107, pp.17409-17414, 2010.

J. C. Mortimer, N. Faria-blanc, X. Yu, T. Tryfona, M. Sorieul et al., An unusual xylan in A. thaliana primary cell walls is synthesized by GUX3, IRX9L, IRX10L and IRX14, Plant J, vol.83, pp.413-426, 2015.

V. K. Nagarajan, V. Satheesh, M. D. Poling, K. G. Raghothama, and A. Jain, A. thaliana MYB-related HHO2 exerts a regulatory influence on a subset of root traits and genes governing phosphate homeostasis, Plant Cell Physiol, vol.57, pp.1142-1152, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00222936

K. G. Neum?-uller, A. C. De-souza, J. H. Van-rijn, H. Streekstra, H. Gruppen et al., Positional preferences of acetyl esterases from different CE families towards acetylated 4-O-methyl glucuronic acid-substituted xylo-oligosaccharides, Biotechnol. Biofuels, vol.8, p.7, 2015.

F. Nicol, I. His, A. Jauneau, S. Vernhettes, H. Canut et al., A plasma membrane-bound putative endo-1,4-b -D-glucanase is required for normal wall assembly and cell elongation in A. thaliana, EMBO J, vol.17, pp.5563-5576, 1998.

M. Ogawa-ohnishi, W. Matsushita, and Y. Matsubayashi, Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana, Nat. Chem. Biol, vol.9, pp.726-730, 2013.

M. Ohtani, N. Nishikubo, B. Xu, M. Yamaguchi, N. Mitsuda et al., A NAC domain protein family contributing to the regulation of wood formation in poplar, Plant J, vol.67, pp.499-512, 2011.

S. Okamoto, H. Shinohara, T. Mori, Y. Matsubayashi, and M. Kawaguchi, Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase, Nat. Commun, vol.4, p.2191, 2013.

P. M. Pawar, S. Koutaniemi, M. Tenkanen, and E. J. Mellerowicz, Acetylation of woody lignocellulose: significance and regulation, Front. Plant Sci, vol.4, p.118, 2013.

P. M. Pawar, .. Derba-maceluch, M. Chong, and S. , Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose, Plant Biotechnol. J, vol.14, pp.387-397, 2016.

P. M. Pawar, C. Ratke, and V. K. Balasubramanian, Downregulation of RWA genes in hybrid aspen affects xylan acetylation and wood saccharification, New Phytol, vol.214, pp.1491-1505, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607003

S. Persson, K. H. Caffall, G. Freshour, M. T. Hilley, S. Bauer et al., The A. thaliana irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity, Plant Cell, vol.19, pp.237-255, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01512889

H. A. Phan, S. Iacuone, S. F. Li, and R. W. Parish, The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana, Plant Cell, vol.23, pp.2209-2224, 2011.

D. Pinard, E. Mizrachi, C. A. Hefer, A. R. Kersting, F. Joubert et al., Comparative analysis of plant Carbohydrate Active enZymes and their role in xylogenesis, BMC Genom, vol.16, p.402, 2015.

J. K. Polko, W. J. Barnes, C. Voiniciuc, S. Doctor, B. Steinwand et al., SHOU4 proteins regulate trafficking of cellulose synthase complexes to the plasma membrane, Curr. Biol, vol.28, pp.3174-3182, 2018.

. R-core-team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2015.

C. Ratke, P. M. Pawar, .. Balasubramanian, V. K. Naumann, M. Duncranz et al., Populus GT43 family members group into distinct sets required for primary and secondary wall xylan biosynthesis and include useful promoters for wood modification, Plant Biotechnol. J, vol.13, pp.26-37, 2015.

C. Ratke, B. K. Terebieniec, and S. Winestrand, Downregulating aspen xylan biosynthetic GT43 genes in developing wood stimulates growth via reprograming of the transcriptome, New Phytol, vol.219, pp.230-245, 2018.

E. A. Rennie and H. V. Scheller, Xylan biosynthesis, Curr. Opin. Biotechnol, vol.26, pp.100-107, 2014.

S. Rips, M. Frank, A. Elting, J. N. Offenborn, and A. Von-schaewen, Golgi a1, 4-fucosyltransferase of A. thaliana partially localizes at the nuclear envelope, Traffic, vol.18, pp.646-657, 2017.

F. Saito, A. Suyama, T. Oka, T. Yoko-o, K. Matsuoka et al., Identification of novel peptidyl serine a-galactosyltransferase gene family in plants, J. Biol. Chem, vol.289, pp.20405-20420, 2014.

Y. Sakamoto, H. Watanabe, M. Nagai, K. Nakade, M. Takahashi et al., Lentinula edodes tlg1 encodes a thaumatin-like protein that is involved in lentinan degradation and fruiting body senescence, Plant Physiol, vol.141, pp.793-801, 2006.

C. S-anchez-rodr-iguez, S. Bauer, and K. Ematy, Chitinase-like1/ pom-pom1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in A. thaliana, Plant Cell, vol.24, pp.589-607, 2012.

T. Schallus, C. Jaeckh, and K. Feh-er, Malectin: a novel carbohydrate-binding protein of the endo-plasmic reticulum and a candidate player in the early steps of protein N-glycosylation, Mol. Biol. Cell, vol.19, pp.3404-3414, 2008.

E. L. Schnabel, T. K. Kassaw, L. S. Smith, J. F. Marsh, G. E. Oldroyd et al., The ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family, Plant Physiol, vol.157, pp.328-340, 2011.

A. Schultink, D. Naylor, M. Dama, and M. Pauly, The role of the plant-specific ALTERED XYLOGLUCAN9 protein in A. thaliana cell wall polysaccharide O-acetylation, Plant Physiol, vol.167, pp.1271-1283, 2015.

J. C. Sedbrook, K. L. Carroll, K. F. Hung, P. H. Masson, and C. R. Somerville, The A. thaliana SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth, Plant Cell, vol.14, pp.1635-1648, 2002.

C. Seyfferth, B. Wessels, S. Jokipii-lukkari, B. Sundberg, N. Delhomme et al., Ethylene-related gene expression networks in wood formation, Front. Plant Sci, vol.9, p.272, 2018.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, 2003.

, Genome Res, vol.13, pp.2498-2504

S. H. Shiu and A. B. Bleecker, Expansion of the receptor-like kinase/ Pelle gene family and receptor-like proteins in A. thaliana, Plant Physiol, vol.132, pp.530-543, 2003.

K. Sola, E. J. Gilchrist, D. Ropartz, L. Wang, I. Feussner et al., Plant galactose oxidases influence pectin properties and promotes cell-to-cell adhesion in the seed coat epidermis of Arabidopsis thaliana, Plant Cell, vol.31, pp.809-831, 2019.

D. Song, J. Shen, and L. Li, Characterization of cellulose synthase complexes in Populus xylem differentiation, New Phytol, vol.187, pp.777-790, 2010.

D. Song, J. Sun, and L. Li, Diverse roles of PtrDUF579 proteins in Populus and PtrDUF579-1 function in vascular cambium proliferation during secondary growth, Plant Mol. Biol, vol.85, pp.601-602, 2014.

D. Sundell, C. Mannapperuma, S. Netotea, N. Delhomme, Y. Lin et al., The plant genome integrative explorer resource: PlantGenIE.org, New Phytol, vol.208, pp.1149-1156, 2015.

D. Sundell, N. R. Street, and M. Kumar, AspWood: high-spatial resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula, Plant Cell, vol.29, pp.1585-1604, 2017.

S. Suzuki, L. G. Li, Y. H. Sun, and V. L. Chiang, The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa, Plant Physiol, vol.142, pp.1233-1245, 2006.

P. M. Szyjanowicz, I. Mckinnon, N. G. Taylor, J. Gardiner, M. C. Jarvis et al., The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of A. thaliana, Plant J, vol.37, pp.730-740, 2004.

J. Takahashi, U. J. Rudsander, and M. Hedenstr?-om, KORRIGAN1 and its aspen homolog PttCel9A1 decrease cellulose crystallinity in A. thaliana stems, Plant Cell Physiol, vol.50, pp.1099-1115, 2009.

Y. Takenaka, K. Kato, and M. Ogawa-ohnishi, Pectin RG-I rhamnosyltransferases represent a novel plant-specific glycosyltransferase family, Nat. Plant, vol.4, pp.669-676, 2018.

M. Taylor-teeples, L. Lin, and M. De-lucas, An A. thaliana gene regulatory network for secondary cell wall synthesis, Nature, vol.517, pp.571-575, 2015.

A. Teleman, J. Lundqvist, F. Tjerneld, H. St-albrand, and O. Dahlman, Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy, Carbohyd. Res, vol.329, pp.807-815, 2000.

J. Trudel, J. Grenier, C. Potvin, and A. Asselin, Several thaumatinlike proteins bind to a-1,3-glucans, Plant Physiol, vol.118, pp.1431-1438, 1998.

P. V. Turlapati, K. W. Kim, L. B. Davin, and N. G. Lewis, The laccase multigene family in A. thaliana: towards addressing the mystery of their gene function(s), Planta, vol.233, pp.439-470, 2011.

G. A. Tuskan, S. Difazio, S. Jansson, J. Bohlmann, I. Grigoriev et al., The genome of black cottonwood, Populus trichocarpa (Torr. & Gray), Science, vol.313, pp.1596-15604, 2006.

B. R. Urbanowicz, M. J. Peña, and S. Ratnaparkhe, 4-O-methylation of glucuronic acid in A. thaliana glucuronoxylan is catalyzed by a domain of unknown function family 579 protein, Proc. Natl Acad. Sci. USA, vol.109, pp.14253-14258, 2012.

B. R. Urbanowicz, M. J. Pena, H. A. Moniz, K. W. Moremen, and W. S. York, Two A. thaliana proteins synthesize acetylated xylan in vitro, Plant J, vol.80, pp.197-206, 2014.

H. A. Valdez, M. V. Busi, N. Z. Wayllace, G. Parisi, R. A. Ugalde et al., Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from A. thaliana, Biochemistry, vol.47, pp.3026-3032, 2008.

S. Vuttipongchaikij, D. Brocklehurst, C. Steele-king, D. A. Ashford, L. D. Gomez et al., A. thaliana GT34 family contains five xyloglucan a -1,6-xylosyltransferases, New Phytol, vol.195, pp.585-595, 2012.

H. Wang, Y. Guo, F. Lv, H. Zhu, S. Wu et al., The essential role of GhPEL gene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton, Plant Mol. Biol, vol.72, pp.397-406, 2010.

H. Wang, C. Jiang, C. Wang, Y. Yang, L. Yang et al., Antisense expression of the fasciclin-like arabinogalactan protein PtFLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees, J. Exp. Bot, vol.66, pp.1291-1302, 2015.

H. Wang, X. Zhuang, X. Wang, A. H. Law, T. Zhao et al., A distinct pathway for polar exocytosis in plant cell wall formation, Plant Physiol, vol.172, pp.1003-1018, 2016.

I. B. Wilson, Glycosylation of proteins in plants and invertebrates, Curr. Opin. Struct. Biol, vol.12, pp.569-577, 2002.

A. M. Wu, C. Rihouey, M. Seveno, E. H?-ornblad, S. K. Singh et al., The A. thaliana IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation, Plant J, vol.57, pp.718-731, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00010764

G. Xiong, K. Cheng, and M. Pauly, Xylan O-acetylation impacts xylem development and enzymatic recalcitrance as indicated by the A. thaliana mutant tbl29, Mol. Plant, vol.6, pp.1373-1375, 2013.

C. Xu, K. L. Liberatore, and C. A. Macalister, A cascade of arabinosyltransferases controls shoot meristem size in tomato, Nat. Genet, vol.47, pp.784-792, 2015.

I. Yanai, H. Benjamin, and M. Shmoish, Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification, Bioinformatics, vol.21, pp.650-659, 2004.

V. L. Yip and S. G. Withers, Breakdown of oligosaccharides by the process of elimination, Curr. Opin. Chem. Biol, vol.10, pp.147-155, 2006.

J. S. Yuan, X. Yang, J. Lai, H. Lin, Z. Cheng et al., The endo-b mannanase gene families in A. thaliana, rice, and poplar, Funct. Integr. Genomics, vol.7, pp.1-16, 2007.

Y. Yuan, Q. Teng, R. Zhong, and Z. H. Ye, The A. thaliana DUF231 domain containing protein ESK1 mediates 2-O-and 3-O-acetylation of xylosyl residues in xylan, Plant Cell Physiol, vol.54, pp.1186-1199, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01400682

Y. Yuan, Q. Teng, R. Zhong, and Z. Ye, Identification and biochemical characterization of four wood-associated glucuronoxylan methyltransferases in Populus, PLoS ONE, vol.9, p.87370, 2014.

Y. Yuan, Q. Teng, R. Zhong, M. Haghighat, E. A. Richardson et al., Mutations of A thaliana TBL32 and TBL33 affect xylan acetylation and secondary wall deposition, PLoS ONE, p.146460, 2016.

Y. Yuan, Q. Teng, R. Zhong, and Z. Ye, Roles of A. thaliana TBL34 and TBL35 in xylan acetylation and plant growth, Plant Sci, vol.243, pp.120-130, 2016.

Y. Yuan, Q. Teng, R. Zhong, and Z. H. Ye, TBL3 and TBL31, two A. thaliana DUF231 domain proteins, are required for 3-O-monoacetylation of xylan, Plant Cell Physiol, vol.57, pp.35-45, 2016.

W. Zeng, E. R. Lampugnani, K. L. Picard, L. Song, A. M. Wu et al., Asparagus IRX9, IRX10, and IRX14A are components of an active xylan backbone synthase complex that forms in the Golgi apparatus, Plant Physiol, vol.171, pp.93-109, 2016.

X. Zhang, P. G. Dominguez, M. Kumar, J. Bygdell, S. Miroshnichenko et al., Cellulose synthase stoichiometry in aspen differs from Arabidopsis and Norway spruce, Plant Physiol, vol.177, pp.1096-1107, 2018.

Y. Zhao, D. Song, J. Sun, and L. Li, Populus endo-b-mannanase PtrMAN6 plays a role in coordinating cell wall remodeling with suppression of secondary wall thickening through generation of oligosaccharide signals, Plant J, vol.74, pp.473-485, 2013.

Q. Zhao, J. Nakashima, F. Chen, Y. Yin, C. Fu et al., Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in A. thaliana, Plant Cell, vol.25, pp.3976-3987, 2013.

R. Zhong, R. L. Mccarthy, C. Lee, and Z. H. Ye, Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar, Plant Physiol, vol.157, pp.1452-1468, 2011.