S. J. Stasinopoulos, P. R. Fisher, B. A. Stone, and V. A. Stanisich, Detection of two loci involved in (133)-?-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene, Glycobiology, vol.9, pp.31-41, 1999.

V. Aimanianda, C. Clavaud, C. Simenel, T. Fontaine, M. Delepierre et al., Cell wall ?-(1,6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis, J. Biol. Chem, vol.284, pp.13401-13412, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00512054

W. R. Scheible, P. , and M. , Glycosyltransferases and cell wall biosynthesis: novel players and insights, Curr. Opin. Plant Biol, vol.7, pp.285-295, 2004.

L. Barsanti, R. Vismara, V. Passarelli, and P. Gualtieri, Paramylon (?-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis: effects of growth conditions, J. Appl. Phycol, vol.13, pp.59-65, 2001.

A. Beattie, E. L. Hirst, P. , and E. , Studies of the metabolism of the Chrysophyceae: comparative structural investigations of leucosin (chrysolaminarin) separated from diatoms and laminarin from the brown algae, Biochem. J, vol.79, pp.531-537, 1961.

B. S. Paulsen and S. Myklestad, Structural studies of the reserve glucan produced by the marine diatom Skeletonema costatum, 1978.

. Cleve, Carbohydr. Res, vol.62, pp.386-388

C. Laroche and P. Michaud, New developments and prospective applications for ?(1,3) glucans, Recent Pat. Biotechnol, vol.1, pp.59-73, 2007.

L. Barsanti, V. Passarelli, V. Evangelista, A. M. Frassanito, and P. Gualtieri, Chemistry, physico-chemistry and applications linked to biological activities of ?-glucans, Nat. Prod. Rep, vol.28, pp.457-466, 2011.

A. M. Neyrinck, A. Mouson, and N. M. Delzenne, Dietary supplementation with laminarin, a fermentable marine ?(1-3) glucan, protects against hepatotoxicity induced by LPS in rat by modulating immune response in the hepatic tissue, Int. Immunopharmacol, vol.7, pp.1497-1506, 2007.

J. J. Volman, J. D. Ramakers, and J. Plat, Dietary modulation of immune function by ?-glucans, Physiol. Behav, vol.94, pp.276-284, 2008.

E. J. Olson, J. E. Standing, N. Griego-harper, O. A. Hoffman, and A. H. Limper, Fungal ?-glucan interacts with vitronectin and stimulates tumor necrosis factor ? release from macrophages, Infect. Immun, vol.64, pp.3548-3554, 1996.

G. Pergolizzi, S. Kuhaudomlarp, E. Kalita, and R. A. Field, Glycan phosphorylases in multi-enzyme synthetic processes, Protein Pept. Lett, vol.24, pp.696-709, 2017.

E. C. O'neill and R. A. Field, Enzymatic synthesis using glycoside phosphorylases, Carbohydr. Res, vol.403, pp.23-37, 2015.

M. Kitaoka, Y. Matsuoka, K. Mori, M. Nishimoto, and K. Hayashi, Characterization of a bacterial laminaribiose phosphorylase, Biosci. Biotechnol. Biochem, vol.76, pp.343-348, 2012.

T. Nihira, Y. Saito, M. Kitaoka, M. Nishimoto, K. Otsubo et al., Characterization of a laminaribiose phosphorylase from Acholeplasma laidlawii PG-8A and production of 1,3-?-D-glucosyl disaccharides, Carbohydr. Res, vol.361, pp.49-54, 2012.

B. L. Cantarel, P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard et al., The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics, Nucleic Acids Res, vol.37, pp.233-238, 2009.

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, 2014.

L. R. Maréchal and S. H. Goldemberg, Laminaribiose phosphorylase from Euglena gracilis, Biochem. Biophys. Res. Commun, vol.13, pp.106-109, 1963.

L. R. Marechal, ?-1,3-oligoglucan: orthophosphate glucosyltransferases from Euglena gracilis I: isolation and some properties of a ?-1,3-oligoglucan phosphorylase, Biochim. Biophys. Acta, vol.146, pp.417-430, 1967.

M. Kitaoka, T. Sasaki, and H. Taniguchi, Purification and properties of laminaribiose phosphorylase (EC 2.4.1.31) from Euglena gracilis, Z. Arch. Biochem. Biophys, vol.304, pp.508-514, 1993.

Y. Yamamoto, D. Kawashima, A. Hashizume, M. Hisamatsu, and N. Isono, Purification and characterization of 1,3-?-D-glucan phosphorylase from Ochromonas danica, Biosci. Biotechnol. Biochem, vol.77, 1949.

G. J. Albrecht and H. Kauss, Purification, crystallization and properties of a ?-(133)-glucan phosphorylase from Ochromonas malhamensis, Phytochemistry, vol.10, pp.1293-1298, 1971.

S. Kuhaudomlarp, S. Walpole, C. E. Stevenson, S. A. Nepogodiev, D. M. Lawson et al., Unravelling the specificity of laminaribiose phosphorylase from Paenibacillus sp. YM-1 towards donor substrates glucose/mannose 1-phosphate by using X-ray crystallography and saturation transfer difference NMR spectroscopy, Chem-BioChem, vol.20, pp.181-192, 2019.

S. Kuhaudomlarp, N. J. Patron, B. Henrissat, M. Rejzek, G. Saalbach et al., Identification of Euglena gracilis ?-1,3-glucan phosphorylase and establishment of a new glycoside hydrolase (GH) family GH149, J. Biol. Chem, vol.293, pp.2865-2876, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094603

M. A. Caballero, D. Jallet, L. Shi, C. Rithner, Y. Zhang et al., Quantification of chrysolaminarin from the model diatom Phaeodactylum tricornutum, Algal Res, vol.20, pp.180-188, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02549574

T. R. Størseth, K. Hansen, K. I. Reitan, and J. Skjermo, Structural characterization of ?-D-(133)-glucans from different growth phases of the marine diatoms Chaetoceros mülleri and Thalassiosira weissflogii, Carbohydr. Res, vol.340, pp.1159-1164, 2005.

E. Granum and S. M. Myklestad, A simple combined method for determination of ?-1,3-glucan and cell wall polysaccharides in diatoms, Hydrobiologia, vol.477, pp.155-161, 2002.

P. G. Kroth, A. Chiovitti, A. Gruber, V. Martin-jezequel, T. Mock et al., A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis, PLoS One, vol.3, 2008.

M. Fabris, M. Matthijs, S. Rombauts, W. Vyverman, A. Goossens et al., The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner-Doudoroff glycolytic pathway, Plant J, vol.70, pp.1004-1014, 2012.

E. V. Armbrust, J. A. Berges, C. Bowler, B. R. Green, D. Martinez et al., The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism, Science, vol.306, pp.79-86, 2004.

E. C. O'neill, G. Pergolizzi, C. E. Stevenson, D. M. Lawson, S. A. Nepogodiev et al., Cellodextrin phosphorylase from Ruminiclostridium thermocellum: X-ray crystal structure and substrate specificity analysis, Carbohydr. Res, vol.451, pp.118-132, 2017.

W. Huang, I. Haferkamp, B. Lepetit, M. Molchanova, S. Hou et al., Reduced vacuolar ?-1,3-glucan synthesis affects carbohydrate metabolism as well as plastid homeostasis and structure in Phaeodactylum tricornutum, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.4791-4796, 2018.

Y. Cheng, T. Hong, C. Liu, M. Meng, V. Chow et al., Cloning and functional characterization of a complex endo-?-1,3-glucanase from Paenibacillus sp, Appl. Microbiol. Biotechnol, vol.81, pp.1789-1798, 2009.

P. Yang, P. Shi, Y. Wang, Y. Bai, K. Meng et al., Cloning and overexpression of a Paenibacillus ?-glucanase in Pichia pastoris: purification and characterization of the recombinant enzyme, J. Microbiol. Biotechnol, vol.17, pp.58-66, 2007.

N. S. Berrow, D. Alderton, S. Sainsbury, J. Nettleship, R. Assenberg et al., A versatile ligation-independent cloning method suitable for high-throughput expression screening applications, Nucleic Acids Res, vol.35, 2007.

Y. Wu, G. Mao, H. Fan, A. Song, Y. P. Zhang et al., Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity, Sci. Rep, vol.7, 2017.

Y. Zhu, P. Chen, Y. Bao, Y. Men, Y. Zeng et al., Complete genome sequence and transcriptomic analysis of a novel marine strain Bacillus weihaiensis reveals the mechanism of brown algae degradation, Sci. Rep, vol.6, 2016.

A. Maqbool, R. S. Horler, A. Muller, A. J. Wilkinson, K. S. Wilson et al., The substrate-binding protein in bacterial ABC transporters: dissecting roles in the evolution of substrate specificity, Biochem. Soc. Trans, vol.43, pp.1011-1017, 2015.

M. Hidaka, M. Kitaoka, K. Hayashi, T. Wakagi, H. Shoun et al., Structural dissection of the reaction mechanism of cellobiose phosphorylase, Biochem. J, vol.398, pp.37-43, 2006.

Y. W. Nam, T. Nihira, T. Arakawa, Y. Saito, M. Kitaoka et al., Crystal structure and substrate recognition of cellobionic acid phosphorylase, which plays a key role in oxidative cellulose degradation by microbes, J. Biol. Chem, vol.290, pp.18281-18292, 2015.

M. Hidaka, Y. Honda, M. Kitaoka, S. Nirasawa, K. Hayashi et al., Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (?/?)(6) barrel fold, Structure, vol.12, pp.937-947, 2004.

M. I. Trindade, V. R. Abratt, R. , S. J. Nihira, T. Suzuki et al., Discovery of ?-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase involved in the metabolism of N-glycans, Appl. Environ. Microbiol, vol.69, pp.27366-27374, 2003.

N. Terrapon, V. Lombard, P. Drula-É-lapébie, S. Al-masaudi, H. J. Gilbert et al., PULDB: the expanded database of polysaccharide utilization loci, Nucleic Acids Res, vol.46, pp.677-683, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094620

J. M. Grondin, K. Tamura, G. Déjean, D. W. Abbott, and H. Brumer, Polysaccharide utilization loci: fuelling microbial communities, J. Bacteriol, vol.199, pp.860-876, 2017.

F. Unfried, S. Becker, C. S. Robb, J. Hehemann, S. Markert et al., Adaptive mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms, ISME J, vol.12, pp.2894-2906, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01949999

K. Chiku, T. Nihira, E. Suzuki, M. Nishimoto, M. Kitaoka et al., Discovery of two ?-1,2-mannoside phosphorylases showing different chain-length specificities from Thermoanaerobacter sp. X-514, PLoS One, vol.9, 2014.

A. L. Davidson, E. Dassa, C. Orelle, C. , and J. , Structure, function, and evolution of bacterial ATP-binding cassette systems, Microbiol. Mol. Biol. Rev, vol.72, pp.317-364, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00319506

Y. Quentin, G. Fichant, and F. Denizot, Inventory, assembly and analysis of Bacillus subtilis ABC transport systems, J. Mol. Biol, vol.287, pp.467-484, 1999.

K. Abe, N. Sunagawa, T. Terada, Y. Takahashi, T. Arakawa et al., Structural and thermodynamics insights into ?-1,2-glucooligosaccharide capture by a solute-binding protein in Listeria innocua, J. Biol. Chem, vol.293, pp.8812-8828, 2018.

M. R. De-groeve, G. H. Tran, A. Van-hoorebeke, J. Stout, T. Desmet et al., Development and application of a screening assay for glycoside phosphorylases, Anal. Biochem, vol.401, pp.162-167, 2010.

F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus et al., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol, vol.7, pp.539-539, 2011.

S. Capella-gutiérrez, J. M. Silla-martínez, and T. Gabaldón, tri-mAl: a tool for automated alignment trimming in large-scale phylogenetic analyses, Bioinformatics, vol.25, pp.1972-1973, 2009.

A. M. Waterhouse, J. B. Procter, D. M. Martin, M. Clamp, and G. J. Barton, Jalview version 2-a multiple sequence alignment editor and analysis workbench, Bioinformatics, vol.25, pp.1189-1191, 2009.

S. Guindon, F. Lethiec, P. Duroux, and O. Gascuel, PHYML online-a web server for fast maximum likelihood-based phylogenetic inference, Nucleic Acids Res, vol.33, pp.557-559, 2005.
URL : https://hal.archives-ouvertes.fr/lirmm-00105317

I. Letunic and P. Bork, Interactive tree of life (iTOL) v3: an online tool for phylogenetic tree display and annotation, Bioinformatics, vol.44, pp.242-245, 2016.