M. E. Himmel and E. A. Bayer, Lignocellulose conversion to biofuels: Current challenges, global perspectives, Curr. Opin. Biotechnol, vol.20, pp.316-317, 2009.

R. C. Armstrong, C. Wolfram, K. P. De-jong, R. Gross, N. S. Lewis et al., The frontiers of energy. Nat. Energy, 2016.

M. E. Himmel, S. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos et al., Biomass recalcitrance: Engineering plants and enzymes for biofuels production, Science, vol.315, pp.804-807, 2007.

D. B. Wilson, Three microbial strategies for plant cell wall degradation, Ann. N. Y. Acad. Sci, vol.1125, pp.289-297, 2008.

M. E. Himmel, Q. Xu, Y. Luo, S. Ding, R. Lamed et al., Microbial enzyme systems for biomass conversion: Emerging paradigms, Biofuels, vol.1, pp.323-341, 2010.

E. A. Bayer, J. P. Belaich, Y. Shoham, and R. Lamed, The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides, Annu. Rev. Microbiol, vol.58, pp.521-554, 2004.

L. Artzi, E. A. Bayer, S. Moraïs, and . Cellulosomes, Bacterial nanomachines for dismantling plant polysaccharides, Nat. Rev. Microbiol, vol.15, pp.83-95, 2017.

R. Lamed, E. Setter, and E. A. Bayer, Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum, J. Bacteriol, vol.156, pp.828-836, 1983.

E. A. Bayer, R. Lamed, B. A. White, and H. J. Flint, From cellulosomes to cellulosomics, Chem. Record, vol.8, pp.364-377, 2008.

S. W. Stahl, M. A. Nash, D. B. Fried, M. Slutzki, Y. Barak et al., Single-molecule dissection of the high-affinity cohesin-dockerin complex, Proc. Natl. Acad. Sci, vol.109, pp.20431-20436, 2012.

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst et al., Ultrastable cellulosome-adhesion complex tightens under load, Nat. Commun, vol.5, 2014.

S. Morais, E. Morag, Y. Barak, D. Goldman, Y. Hadar et al., Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes, vol.3, pp.508-520, 2012.

Y. Vazana, Y. Barak, T. Unger, Y. Peleg, M. Shamshoum et al., A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates, Biotechnol. Biofuels, vol.6, 2013.

B. Dassa, I. Borovok, V. Ruimy-israeli, R. Lamed, H. J. Flint et al., Rumen cellulosomics: Divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains, PLoS ONE, vol.9, 2014.

V. Israeli-ruimy, P. Bule, S. Jindou, B. Dassa, S. Moraïs et al., Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions

B. Dassa, I. Borovok, R. Lamed, B. Henrissat, P. Coutinho et al., Genome-wide analysis of Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system, BMC Genom, vol.13, 2012.

Y. Hamberg, V. Ruimy-israeli, B. Dassa, Y. Barak, R. Lamed et al., Elaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesin-dockerin interactions, PeerJ, vol.2, 2014.

L. Artzi, B. Dassa, I. Borovok, M. Shamshoum, R. Lamed et al., Cellulosomics of the cellulolytic thermophile Clostridium clariflavum, Biotechnol. Biofuels, vol.7, p.100, 2014.

S. Aikawa, S. Baramee, J. Sermsathanaswadi, P. Thianheng, C. Tachaapaikoon et al., Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium, Syst. Appl. Microbiol, vol.41, pp.261-269, 2018.

A. Pechtl, C. Rückert, I. Maus, D. E. Koeck, N. Trushina et al., Complete Genome Sequence of the Novel Cellulolytic, Anaerobic, Thermophilic Bacterium Herbivorax saccincola Type Strain GGR1, Isolated from a Lab Scale Biogas Reactor as Established by Illumina and Nanopore MinION Sequencing, Genome Announc, vol.6, pp.1493-1510, 2018.

B. Dassa, S. Utturkar, R. A. Hurt, D. M. Klingeman, M. Keller et al., Near-complete genome sequence of the cellulolytic bacterium Bacteroides (Pseudobacteroides) cellulosolvens ATCC 35603, Genome Announc, vol.3, pp.1022-1037, 2015.

O. Zhivin, B. Dassa, S. Moraïs, S. M. Uttukar, S. D. Brown et al., Unique organization and unprecedented diversity of the Bacteroides (Pseudobacteroides) cellulosolvens cellulosome system, Biotechnol. Biofuels, vol.10, p.211, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802866

O. Zhivin-nissan, B. Dassa, E. Morag, M. Kupervaser, Y. Levin et al., Unraveling essential cellulosomal components of the (Pseudo)Bacteroides cellulosolvens reveals an extensive reservoir of novel catalytic enzymes, Biotechnol. Biofuels, vol.12, 2019.

R. H. Doi and A. Kosugi, Cellulosomes: Plant-cell-wall-degrading enzyme complexes, Nat. Rev. Microbiol, vol.2, pp.541-551, 2004.

W. H. Schwarz and W. Schwarz, The cellulosome and cellulose degradation by anaerobic bacteria, Appl. Microbiol. Biotechnol, vol.56, pp.634-649, 2001.

D. Y. Sorokin, T. Berben, E. D. Melton, L. Overmars, C. D. Vavourakis et al., Microbial diversity and biogeochemical cycling in soda lakes, Extremophiles, vol.18, pp.791-809, 2014.

T. N. Zhilina, V. V. Kevbrin, T. P. Tourova, A. M. Lysenko, N. A. Kostrikina et al., Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the baikal region, Microbiology, vol.74, pp.557-566, 2005.

E. A. Zvereva, T. V. Fedorova, V. V. Kevbrin, T. N. Zhilina, and M. L. Rabinovich, Cellulase activity of a haloalkaliphilic anaerobic bacterium, strain Z-7026, Extremophiles, vol.10, pp.53-60, 2006.

R. Selvarajan, T. Felföldi, T. Tauber, E. Sanniyasi, T. Sibanda et al., Screening and evaluation of some green algal strains (Chlorophyceae) isolated from freshwater and soda lakes for biofuel production, vol.8, p.7502, 2015.

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang et al., Gapped blast and psi-blast: A new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus et al., Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega, Mol. Syst. Biol, 2011.

T. N. Petersen, S. Brunak, G. Von-heijne, and H. Nielsen, Signalp 4.0: Discriminating signal peptides from transmembrane regions, Nat. Methods, vol.8, pp.785-786, 2011.

G. E. Crooks, G. Hon, J. M. Chandonia, S. E. Brenner, and . Weblogo, A sequence logo generator, Genome Res, vol.14, pp.1188-1190, 2004.

M. Wilchek and E. A. Bayer, Applications of avidin-biotin technology: Literature survey, Methods Enzymol, vol.184, pp.14-45, 1990.

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

E. V. Groman, J. M. Rothenberg, E. A. Bayer, and M. Wilchek, Enzymatic and radioactive assays for biotin, avidin, and streptavidin, Methods Enzymol, vol.184, pp.208-217, 1990.

R. D. Finn, P. Coggill, R. Y. Eberhardt, S. R. Eddy, J. Mistry et al., The Pfam protein families database: Towards a more sustainable future, Nucleic Acids Res, vol.44, pp.279-285, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01294685

A. Dereeper, V. Guignon, G. Blanc, S. Audic, S. Buffet et al., Fr: Robust phylogenetic analysis for the non-specialist, Nucleic Acids Res, vol.36, pp.465-469, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324099

I. Letunic and P. Bork, Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees, Nucleic Acids Res, vol.44, pp.242-245, 2016.

E. Morag, A. Lapidot, D. Govorko, R. Lamed, M. Wilchek et al., Expression, purification, and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum, Appl. Environ. Microbiol, vol.61, pp.1980-1986, 1995.

Y. Barak, T. Handelsman, D. Nakar, A. Mechaly, R. Lamed et al., Matching fusion protein systems for affinity analysis of two interacting families of proteins: The cohesin-dockerin interaction, J. Mol. Recognit, vol.18, pp.491-501, 2005.

R. Haimovitz, Y. Barak, E. Morag, M. Voronov-goldman, R. Lamed et al., Cohesin-dockerin microarray: Diverse specificities between two complementary families of interacting protein modules, Proteomics, vol.8, pp.968-979, 2008.

A. Lapidot, A. Mechaly, and Y. Shoham, Overexpression and single-step purification of a thermostable xylanase from Bacillus stearothermophilus T-6, J. Biotechnol, vol.51, pp.259-264, 1996.

M. Wilchek and E. A. Bayer, Avidin-biotin mediated immunoassays: Overview, Methods Enzymol, vol.184, pp.467-469, 1990.

S. Yoav, Y. Barak, M. Shamshoum, I. Borovok, R. Lamed et al., How does cellulosome composition influence deconstruction of lignocellulosic substrates in Clostridium (Ruminiclostridium) thermocellum DSM 1313?, Biotechnol. Biofuels, vol.10, 2017.

D. M. Poole, E. Morag, R. Lamed, E. A. Bayer, G. P. Hazlewood et al., Identification of the cellulose binding domain of the cellulosome subunit S1 from Clostridium thermocellum, FEMS Microbiol. Lett, vol.99, pp.181-186, 1992.

J. Tormo, R. Lamed, A. J. Chirino, E. Morag, E. A. Bayer et al., Crystal structure of a bacterial family-III cellulose-binding domain: A general mechanism for attachment to cellulose, EMBO J, vol.15, pp.5739-5751, 1996.

S. Jindou, T. Kajino, M. Inagaki, S. Karita, P. Beguin et al., Interaction between a type-II dockerin domain and a type-II cohesin domain from Clostridium thermocellum cellulosome, Biosci. Biotechnol. Biochem, vol.68, pp.924-926, 2004.

E. Leibovitz and P. Beguin, A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein cipa, J. Bacteriol, vol.178, pp.3077-3084, 1996.

B. A. Pinheiro, H. J. Gilbert, K. Sakka, K. Sakka, V. O. Fernandes et al., Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum, Biochem. J, vol.424, pp.375-384, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00479238

B. David, Y. Dassa, B. Borovok, I. Lamed, R. Koropatkin et al., Ruminococcal cellulosome systems from rumen to human, Environ. Microbiol, vol.17, pp.3407-3426, 2015.

S. Moraïs, Y. Ben-david, D. Cockburn, N. M. Koropatkin, E. C. Martens et al., Lysozyme activity of the Ruminococcus champanellensis cellulosome, Environ. Microbiol, vol.18, pp.5112-5122, 2016.

L. Artzi, E. Morag, M. Shamshoum, and E. A. Bayer, Cellulosomal expansin: Functionality and incorporation into the complex, Biotechnol. Biofuels, vol.9, pp.1-15, 2016.

S. Pagès, A. Belaich, J. Belaich, E. Morag, R. Lamed et al., Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: Prediction of specificity determinants of the dockerin domain, Proteins, vol.29, pp.517-527, 1997.

A. Mechaly, S. Yaron, R. Lamed, H. Fierobe, A. Belaich et al., Cohesin-dockerin recognition in cellulosome assembly: Experiment versus hypothesis, Proteins, vol.39, pp.170-177, 2000.

S. P. Smith and E. A. Bayer, Insights into cellulosome assembly and dynamics: From dissection to reconstruction of the supramolecular enzyme complex, Curr. Opin. Struct. Biol, vol.23, pp.686-694, 2013.

A. L. Carvalho, F. M. Dias, T. Nagy, J. A. Prates, M. R. Proctor et al., Evidence for a dual binding mode of dockerin modules to cohesins, Proc. Natl. Acad. Sci, vol.104, pp.3089-3094, 2007.

M. A. Nash, S. P. Smith, C. M. Fontes, and E. A. Bayer, Single-versus dual-binding conformations in cellulosomal cohesin-dockeirn complexes, Curr. Opin. Struct. Biol, vol.40, pp.89-96, 2016.

Z. B. Ögel, D. Brayford, and M. J. Mcpherson, Cellulose-triggered sporulation in the galactose oxidase-producing fungus Cladobotryum (Dactylium) dendroides NRRL 2903 and its re-identification as a species of fusarium, Mycol. Res, vol.98, pp.474-480, 1994.

D. T. Yin, S. Urresti, M. Lafond, E. M. Johnston, F. Derikvand et al., Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family, Nat. Commun, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01269516

J. G. Ortiz-tena, B. Rühmann, D. Schieder, and V. Sieber, Revealing the diversity of algal monosaccharides: Fast carbohydrate fingerprinting of microalgae using crude biomass and showcasing sugar distribution in Chlorella vulgaris by biomass fractionation, Algal Res, vol.17, pp.227-235, 2016.

S. Pieper, I. Unterieser, F. Mann, and P. Mischnick, A new arabinomannan from the cell wall of the chlorococcal algae Chlorella vulgaris, Carbohydr. Res, vol.352, pp.166-176, 2012.

A. K. Chaplin, M. L. Petrus, G. Mangiameli, M. A. Hough, D. A. Svistunenko et al., GlxA is a new structural member of the radical copper oxidase family and is required for glycan deposition at hyphal tips and morphogenesis of streptomyces lividans, Biochem. J, vol.469, pp.433-444, 2015.

K. Ogasawara, K. Yamada, N. Hatsugai, C. Imada, and M. Nishimura, Hexose oxidase-mediated hydrogen peroxide as a mechanism for the antibacterial activity in the red seaweed ptilophora subcostata, PLoS ONE, vol.11, 2016.

K. Parikka, A. Leppänen, L. Pitkänen, M. Reunanen, S. Willför et al., Oxidation of polysaccharides by galactose oxidase, J. Agric. Food Chem, vol.58, pp.262-271, 2010.

G. Mamo, M. Thunnissen, R. Hatti-kaul, and B. Mattiasson, An alkaline active xylanase: Insights into mechanisms of high ph catalytic adaptation, Biochimie, vol.91, pp.1187-1196, 2009.

S. K. Choi and L. G. Ljungdahl, Structural role of calcium for the organization of the cellulosome of Clostridium thermocellum, Biochemistry, vol.35, pp.4906-4910, 1996.

L. Bensoussan, S. Morais, B. Dassa, N. Friedman, B. Henrissat et al., Broad phylogeny and functionality of cellulosomal components in the bovine rumen microbiome, Environ. Microbiol, vol.19, pp.185-197, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802735

V. V. Zverlov, J. Kellermann, and W. H. Schwarz, Functional subgenomics of Clostridium thermocellum cellulosomal genes: Identification of the major catalytic components in the extracellular complex and detection of three new enzymes, Proteomics, vol.5, pp.3646-3653, 2005.

M. Levy-assaraf, M. Voronov-goldman, I. Rozman-grinberg, G. Weiserman, L. J. Shimon et al., Crystal structure of an uncommon cellulosome-related protein module from Ruminococcus flavefaciens that resembles papain-like cysteine peptidases, PLoS ONE, vol.8, 2013.

G. Zhao, E. Ali, M. Sakka, T. Kimura, and K. Sakka, Binding of s-layer homology modules from Clostridium thermocellum SdbA to peptidoglycans, Appl. Microbiol. Biotechnol, vol.70, pp.464-469, 2006.

C. M. Fontes, H. J. Gilbert, and . Cellulosomes, Highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates, Annu. Rev. Biochem, vol.79, pp.655-681, 2010.

Q. Xu, M. G. Resch, K. Podkaminer, S. Yang, J. O. Baker et al., Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities

M. Voronov-goldman, O. Yaniv, O. Gul, H. Yoffe, O. Salama-alber et al., Standalone cohesin as a molecular shuttle in cellulosome assembly, FEBS Lett, vol.589, pp.1569-1576, 2015.

C. Chen, Z. Cui, X. Song, Y. J. Liu, Q. Cui et al., Integration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradation, Appl. Microbiol. Biotechnol, vol.100, pp.2203-2212, 2016.

E. A. Bayer, Cellulosomes and designer cellulosomes: Why toy with nature?, Environ. Microbiol. Rep, vol.9, pp.14-15, 2017.

M. Gunnoo, P. Cazada, A. Galera-prat, M. A. Nash, M. Czjzek et al., Nano-scale engineering of designer cellulosomes, Adv. Mater, vol.28, pp.5619-5647, 2016.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI