A. Hartmann, D. Tesch, H. G. Nothwang, and O. Bininda-emonds, Evolution of the Cation Chloride Cotransporter Family: Ancient Origins, Gene Losses, and Subfunctionalization through Duplication, Molecular biology and evolution, p.225, 2014.

G. Gamba, Molecular Physiology and Pathophysiology of electroneutral Cation-Chloride Cotransporter, Physiological Reviews, vol.85, pp.423-93, 2005.

N. D. Daigle, G. A. Carpentier, R. Frenette-cotton, C. F. Simard, M. Lefoll et al., Molecular characterization of a human cation-Cl-cotransporter (SLC12A8, CCC9A) that promotes polyamine and amino acid transport, Journal of Cellular Physiology, vol.220, pp.680-689, 2009.

A. Hartmann and H. G. Nothwang, Molecular and evolutionary insights into the structural organization of cation chloride cotransporters. Name: Frontiers in Cellular Neuroscience, vol.8, p.470, 2015.

J. A. Payne, C. Rivera, J. Voipo, and K. Kaila, Cation-Chloride cotransporters in neuronal communication, development and trauma Trends in Neuroscience, vol.26, pp.199-206, 2003.

J. P. Arroyo, K. T. Kahle, and G. Gamba, The SLC12 family of electroneutral cation-coupled chloride cotransporters, Molecular Aspects of Medicine, vol.34, pp.288-98, 2013.

K. T. Kahle, K. J. Staley, B. V. Nahed, G. Gamba, S. C. Hebert et al., Roles of the cation-chloride cotransporters in neurological disease, Nature Clinical Practice, vol.4, pp.490-502, 2008.

P. Blaesse, M. S. Airaksinen, C. Rivera, and K. Kaila, Cation-Chloride Cotransporters and Neuronal Function, Cell, vol.61, pp.820-858, 2009.

N. C. Adragna, M. D. Fulvio, and P. K. Lauf, Regulation of K-Cl Cotransport: from Function to Genes, Journal of Membrane Biology, vol.201, p.15711773, 2004.

D. Fulvio, M. Alvarez-leefmans, and F. J. , The NKCC and NCC genes: an in silico view. Physiology and Pathology of Chloride Transporters and Channels in the Nervous System, pp.169-208, 2009.

K. B. Gagnon and E. Delpire, Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts, American Journal of Physiology-Cell Physiology, vol.304, pp.693-714, 2013.

I. Medina, P. Friedel, C. Rivera, K. T. Kahle, N. Kourdougli et al., Current view on the functional regulation of the neuronal K+-Cl? cotransporter KCC2, Frontiers in cellular neuroscience, vol.8, 2014.

K. Achilles, A. Okabe, M. Ikeda, C. Shimizu-okabe, F. Yamada et al., Kinetic properties of Cluptake mediated by Na + -dependent K + -2Cl -cotransport in immature rat neocortical neurons, Journal of Neuroscience, vol.27, pp.8616-8643, 2007.

S. T. Sipilä, K. Huttu, J. Yamada, R. Afzalov, J. Voipio et al., Compensatory enhancement of intrinsic spiking upon NKCC1 disruption in neonatal hippocampus, The Journal of Neuroscience, vol.29, pp.6982-6990, 2009.

J. Yamada, M. Okabe, H. Toyoda, W. Kilb, H. J. Luhmann et al., Cl -uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1, Journal of Physiology, vol.557, pp.829-870, 2004.

R. Yuste and L. C. Katz, Control of postsynaptic Ca 2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters, Neuron, vol.6, pp.333-377, 1991.

L. Zhu, N. Polley, G. C. Mathews, and E. Delpire, NKCC1 and KCC2 prevent hyperexcitability in the mouse hippocampus, Epilepsy research, vol.79, issue.2-3, pp.201-213, 2008.

Y. Ben-ari, NKCC1 chloride importer antagonists attenuate many neurological and psychiatric disorders, Trends in neurosciences, vol.40, issue.9, pp.536-54, 2017.

D. R. Alessi, J. Zhang, A. Khanna, T. Hochdörfer, Y. Shang et al., The WNK-SPAK/OSR1 pathway: Master regulator of cation-chloride cotransporters, Science signaling, vol.7, issue.334, p.3, 2014.

Y. E. Moore, M. R. Kelley, N. J. Brandon, T. Z. Deeb, and M. Sjjtin, Seizing control of KCC2: a new therapeutic target for epilepsy, vol.40, pp.555-71, 2017.

A. Cordshagen, W. Busch, M. Winklhofer, H. G. Nothwang, and A. Hartmann, Phosphoregulation of the intracellular termini of K+-Cl? cotransporter 2 (KCC2) enables flexible control of its activity, Journal of Biological Chemistry, vol.293, issue.44, pp.16984-93, 2018.

P. Blaesse, I. Guillemin, J. Schindler, M. Schweizer, E. Delpire et al., Oligomerization of KCC2 Correlates with Development of Inhibitory Neurotransmission, The Journal of Neuroscience, vol.26, issue.41, pp.10407-10426, 2006.

S. Khirug, K. Huttu, A. Ludwig, S. Smirnov, J. Voipo et al., Distinct properties of functional KCC2 expression in immature mouse hippocampal neurons in culture and in acute slices, European Journal of Neuroscience, vol.21, issue.4, p.15787696, 2005.

P. W. Flatman, Regulation of Na-K-2Cl cotranport by phosphorylation adn protein-protein interactions, Biochemica et biophysica Acta, vol.1566, pp.140-51, 2002.

C. Lytle, T. J. Mcmanus, and M. Haas, A model of Na-K-2Cl cotransport based on ordered ion binding and glide symmetry, American Journal of Physiology-Cell Physiology, vol.274, issue.2, pp.299-309, 1998.

M. Muzyamba, A. Cossins, and J. Gibson, Regulation of Na+-K+-2Cl? cotransport in turkey red cells: the role of oxygen tension and protein phosphorylation, The Journal of physiology, vol.517, issue.2, pp.421-430, 1999.

H. C. Palfrey and S. Leung, Inhibition of Na-K-2Cl cotransport and bumetanide binding by ethacrynic acid, its analogues, and adducts, American Journal of Physiology-Cell Physiology, vol.264, issue.5, pp.1270-1277, 1993.

M. Weber, A. Hartmann, T. Beyer, A. Ripperger, and H. G. Nothwang, A novel regulatory locus of phosphorylation in the C-terminus of the potassium chloride cotransporter KCC2 that interferes with N-ethylmaleimide or staurosporine mediated activation, Journal of Biological Chemistry, p.114, 2014.

L. C. Conway, R. A. Cardarelli, Y. E. Moore, K. Jones, L. J. Mcwilliams et al., N-Ethylmaleimide increases KCC2 cotransporter activity by modulating transporter phosphorylation, Journal of Biological Chemistry, vol.292, issue.52, pp.21253-63, 2017.

I. Bize, B. Gü-venç, G. Buchbinder, and C. Brugnara, Stimulation of human erythrocyte K-Cl cotransport and protein phosphatase type 2A by n-ethylmaleimide: role of intracellular Mg++. The Journal of membrane biology, vol.177, pp.159-68, 2000.

M. L. Jennings and R. K. Schulz, Okadaic acid inhibition of KCl cotransport. Evidence that protein dephosphorylation is necessary for activation of transport by either cell swelling or N-ethylmaleimide. The Journal of general physiology, vol.97, pp.799-817, 1991.

K. Gagnon, R. England, and E. Delpire, Characterization of SPAK and OSR1, regulatory kinases of the Na-K-2Cl cotransporter, Molecular and cellular biology, vol.26, issue.2, pp.689-98, 2006.

N. Vardi, L. Zhang, J. A. Payne, and P. Sterling, Evidence that differnet cation chloride cotransporters in retinal neurons allow opposite responses to GABA, The Journal of Neuroscience, vol.20, issue.20, pp.7657-63, 2000.

V. Balakrishnan, M. Becker, S. Löhrke, H. G. Nothwang, E. Güresir et al., Expression and Function of Chloride Transportes during Development of Inhibitory Neurotransmission in the Auditory Brainstem, The Journal of Neuroscience, vol.23, pp.4134-4179, 2003.

T. J. Price and L. O. Trussel, Estimate of the chloride concentration in a central glutamatergic terminal: gramicidin perforated-patch study on the calyx of Held, Journal of Neuroscience, vol.26, pp.11432-11438, 2006.

A. Hartmann, P. Blaesse, T. Kranz, M. Wenz, J. Schindler et al., Opposite effect of membrane raft perturbation on transport activity of KCC2 and NKCC1, Journal of Neurochemistry, vol.111, issue.2, p.19686239, 2009.

M. Wenz, A. Hartmann, E. Friauf, and H. G. Nothwang, CIP1 is an activator of the K + -Cl -cotransporter KCC2, Biochemical and Biophysical Research Communications, vol.381, pp.388-92, 2009.

M. Shekarabi, J. Zhang, A. R. Khanna, D. H. Ellison, E. Delpire et al., WNK kinase signaling in ion homeostasis and human disease, Cell metabolism, vol.25, issue.2, pp.285-99, 2017.

J. Rinehart, Y. D. Maksimova, J. E. Tanis, K. L. Stone, C. A. Hodson et al., Sites of Regulated Phosphorylation that Control K-Cl Cotransporter Activity, Cell, vol.138, pp.525-561, 2009.

M. Markkanen, A. Ludwig, S. Khirug, E. Pryazhnikov, S. Soni et al., Implications of the N-terminal heterogeneity for the neuronal K-Cl cotransporter KCC2 function, Brain research, vol.1675, pp.87-101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01961845

P. De-los-heros, D. R. Alessi, R. Gourlay, D. G. Campbell, M. Deak et al., The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K + -Cl -co-transporters, Biochem J, vol.458, pp.559-73, 2014.

Y. E. Moore, T. Z. Deeb, H. Chadchankar, N. J. Brandon, and S. J. Moss, Potentiating KCC2 activity is sufficient to limit the onset and severity of seizures, Proceedings of the National Academy of Sciences, vol.115, issue.40, pp.10166-71, 2018.

S. Titz, E. M. Sammler, and S. G. Hormuzdi, Could tuning of the inhibitory tone involve graded changes in neuronal chloride transport? Neuropharmacology, 2015.

P. Friedel, K. T. Kahle, J. Zhang, N. Hertz, L. I. Pisella et al., WNK1-regulated inhibitory phosphorylation of the KCC2 cotransporter maintains the depolarizing action of GABA in immature neurons, Sci Signal, vol.8, issue.383, p.65, 2015.

K. Inoue, T. Furukawa, T. Kumada, J. Yamada, T. Wang et al., Taurine inhibits K+-Cl? cotransporter KCC2 to regulate embryonic Cl? homeostasis via With-no-lysine (WNK) protein kinase signaling pathway, Journal of Biological Chemistry, vol.287, issue.25, pp.20839-50, 2012.

A. Hartmann and H. G. Nothwang, Molecular and evolutionary insights into the structural organization of cation chloride cotransporters, Frontiers in cellular neuroscience, vol.8, 2014.

C. Richardson and D. R. Alessi, The regulation of salt transport and blood pressure by the WNK-SPAK/ OSR1 signalling pathway, Journal of cell science, vol.121, issue.20, pp.3293-304, 2008.

J. O. Thastrup, F. H. Rafiqi, A. C. Vitari, E. Pozo-guisado, M. Deak et al., SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation, Biochemical Journal, vol.441, issue.1, pp.325-362, 2012.

Y. Geng, A. Hoke, and E. Delpire, The Ste20 Kinases SPAK and OSR1 regulate NKCC1 function in sensory neurons, The Journal of Biological Chemistry, vol.284, pp.14020-14028, 2009.

K. B. Gagnon, R. England, and E. Delpire, A single binding motif is required for SPAK activation of the Na-K-2Cl cotransporter, Cellular Physiology and Biochemistry, vol.20, issue.1-4, pp.131-173, 2007.

T. Moriguchi, S. Urushiyama, N. Hisamoto, S. Iemura, S. Uchida et al., WNK1 regulates phosphorylation of Cation-Chloride-coupled Cotransporters via the STE20-related kinases, SPAK and OSR1, Journal of Biological Chemistry, vol.280, issue.52, pp.42685-93, 2005.

A. C. Vitari, J. Thastrup, F. H. Rafiqi, M. Deak, M. Na et al., Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1, Biochemical Journal, vol.397, pp.223-254, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00478531

R. B. Darman and B. Forbush, A regulatory locus of phosphorylation in the N terminus of the Na-K-Cl cotransporter, NKCC1, Journal of Biological Chemistry, vol.277, issue.40, pp.37542-50, 2002.

B. Dowd, B. Forbush, and . Pask, Proline-Alanine-rich-related Kinase), a regulatory kinase of the Na-K-Cl cotransporter (NKCC1), The Journal of Biological Chemistry, vol.278, issue.30, pp.27347-53, 2003.

H. Lee, J. A. Walker, R. W. Jeffrey, R. J. Goodier, J. A. Payne et al., Direct PKC-dependent phosphorylation regulates the cell surface stability and activity of the potassium chloride cotransporter, KCC2, 2007.

T. Buerli, C. Pellegrino, K. Baer, B. Lardi-studler, I. Chudotvorova et al., Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. Nature protocols, vol.2, p.3090, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00483856

A. Hartmann, L. I. Pisella, I. Medina, and H. G. Nothwang, Molecular cloning and biochemical characterization of two cation chloride cotransporter subfamily members of Hydra vulgaris, PloS one, vol.12, issue.6, p.179968, 2017.

A. Hartmann, M. Wenz, A. Mercado, C. Störger, D. B. Mount et al., Differences in the large extracellular loop between the K+-Cl-cotransporters KCC2 and KCC4, The Journal of Biological Chemistry, vol.285, issue.31, pp.23994-4002, 2010.

J. R. Wisniewski, Quantitative Evaluation of Filter Aided Sample Preparation (FASP) and Multienzyme Digestion FASP Protocols, Analytical chemistry, vol.88, issue.10, pp.5438-5481, 2016.

J. R. Wisniewski and F. Z. Gaugaz, Fast and sensitive total protein and Peptide assays for proteomic analysis, Analytical chemistry, vol.87, issue.8, pp.4110-4116, 2015.

J. R. Wisniewski, N. Nagaraj, A. Zougman, F. Gnad, and M. Mann, Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology, Journal of proteome research, vol.9, issue.6, pp.3280-3289, 2010.

J. R. Wisniewski and M. Mann, Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis, Analytical chemistry, vol.84, issue.6, pp.2631-2638, 2012.

M. W. Pinkse, P. M. Uitto, M. J. Hilhorst, B. Ooms, and A. J. Heck, Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns, Analytical chemistry, vol.76, issue.14, pp.3935-3978, 2004.

C. Lytle and T. Mcmanus, Coordinate modulation of Na-K-2Cl cotransport and K-Cl cotransport by cell volume and chloride, American Journal of Physiol Cell Physiology, vol.283, pp.1422-1453, 2002.

É. Gagnon, R. England, and E. Delpire, Volume sensitivity of cation-Cl-cotransporter is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4, American Journal of Physiol Cell Physiol, vol.290, pp.134-176, 2005.

E. Delpire, E. Days, L. M. Lewis, M. D. Kim, K. Lindsley et al., Small-molecule screen identifies inhibitors of the neuronal K-Cl cotransporter KCC2, PNAS, vol.106, issue.13, pp.5383-5391, 2009.

C. M. Gillen, S. Brill, J. A. Payne, and B. Forbush, Molecular Cloning and Functional Expression of the K-Cl Cotransporter from Rabbit, Rat and Human, The Journal of Biological Chemistry, vol.271, pp.16237-16281, 1996.

S. J. Culliford, J. C. Ellory, H. Lang, H. Englert, H. M. Staines et al., Specificity of classical and putative Cl-transport inhibitors on membrane transport pathways in human erythrocytes, Cellular Physiology and Biochemistry, vol.13, issue.4, pp.181-189, 2003.

P. V. Hornbeck, J. M. Kornhauser, S. Tkachev, B. Zhang, E. Skrzypek et al., PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse, Nucleic acids research, vol.40, issue.D1, pp.261-70, 2011.

M. J. Bergeron, K. Gagnon, L. Caron, and P. Isenring, Identification of Key functional domains in the C Terminus of the K + -Cl -cotransporters, J Biol Chem, vol.281, pp.15959-69, 2006.

A. C. Vitari, M. Deak, N. A. Morrice, and D. R. Alessi, The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases, Biochemical Journal, vol.391, issue.1, pp.17-24, 2005.

A. Zagó-rska, E. Pozo-guisado, J. Boudeau, A. C. Vitari, F. H. Rafiqi et al., Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress. The Journal of cell biology, vol.176, pp.89-100, 2007.

S. Uchida, E. Sohara, T. Rai, and S. Sjbotc, Regulation of with-no-lysine kinase signaling by Kelch-like proteins, vol.106, pp.45-56, 2014.

L. Smith, N. Smallwood, A. Altman, and C. M. Liedtke, PKC? acts upstream of SPAK in the activation of NKCC1 by hyperosmotic stress in human airway epithelial cells, Journal of Biological Chemistry, vol.283, issue.32, pp.22147-56, 2008.

D. Castillo, I. C. Fedor-chaiken, M. Song, J. C. Starlinger, V. Yoo et al., Dynamic regulation of Na+-K+-2Cl? cotransporter surface expression by PKC-? in Cl?-secretory epithelia, American Journal of Physiology-Cell Physiology, vol.289, issue.5, pp.1332-1375, 2004.

R. Palmer, J. Ridden, and P. Parker, Identification of multiple, novel, protein kinase C-related gene products, FEBS letters, vol.356, issue.1, pp.5-8, 1994.

B. L. Webb, S. J. Hirst, and M. A. Giembycz, Protein kinase C isoenzymes: a review of their structure, regulation and role in regulating airways smooth muscle tone and mitogenesis, British journal of pharmacology, vol.130, issue.7, pp.1433-52, 2000.

P. J. Parker and J. Murray-rust, PKC at a glance, Journal of cell science, vol.117, issue.2, pp.131-133, 2004.

A. C. Newton, Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions, Chemical reviews, vol.101, issue.8, pp.2353-64, 2001.

A. W. Flemmer, I. Gimenz, B. Dowd, R. B. Darman, and B. Forbush, Activation of the Na-K-Cl cotransporter NKCC1 detected with a Phospho-specific antibody, The Journal of Biological Chemistry, vol.277, issue.40, pp.37551-37559, 2002.

R. B. Darman, A. Flemmer, and B. Forbush, Modulation of ion transport by direct targeting of protein phosphatase type 1 tothe Na-K-Cl cotransporter, The Journal of Biological Chemistry, vol.276, issue.37, pp.34359-62, 2001.

H. H. Lee, T. Z. Deeb, J. A. Walker, P. A. Davies, and M. Sjjnn, NMDA receptor activity downregulates KCC2 resulting in depolarizing GABA A receptor-mediated currents, vol.14, p.736, 2011.

E. Salzer, E. Santos-valente, B. Keller, K. Warnatz, and B. Kjjoci, Protein kinase C ?: a gatekeeper of immune homeostasis, vol.36, pp.631-671, 2016.

N. Cheng, R. He, J. Tian, M. C. Dinauer, and R. Dyjtjoi, A critical role of protein kinase C? activation loop phosphorylation in formyl-methionyl-leucyl-phenylalanine-induced phosphorylation of p47phox and rapid activation of nicotinamide adenine dinucleotide phosphate oxidase, vol.179, pp.7720-7728, 2007.

L. Stempka, A. Girod, H. Mü-ller, G. Rincke, F. Marks et al., Phosphorylation of Protein Kinase C? (PKC?) at Threonine 505 is not a prerequisite for enzymatic activity expression of rat pkc? and an alanine 505 mutant in bacteria in a functional form, vol.272, pp.6805-6816, 1997.

K. T. Kahle, T. Z. Deeb, M. Puskarjov, L. Silayeva, B. Liang et al., Modulation of neuronal activity by phosphorylation of the K-Cl cotransporter KCC2, Trends in neurosciences, vol.36, issue.12, pp.726-763, 2013.

K. T. Kahle and E. Delpire, Kinase-KCC2 coupling: Cl? rheostasis, disease susceptibility, therapeutic target, Journal of neurophysiology, vol.115, issue.1, pp.8-18, 2015.

K. T. Kahle, J. Rinehart, and R. P. Lifton, Phosphoregulation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, vol.1802, issue.12, pp.1150-1158, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00636207

L. Silayeva, T. Z. Deeb, R. M. Hines, M. R. Kelley, M. B. Munoz et al., KCC2 activity is critical in limiting the onset and severity of status epilepticus, Proceedings of the National Academy of Sciences, vol.112, issue.11, pp.3523-3531, 2015.

M. U. Naik, E. Benedikz, I. Hernandez, J. Libien, J. Hrabe et al., Distribution of protein kinase M? and the complete protein kinase C isoform family in rat brain, Journal of Comparative Neurology, vol.426, issue.2, pp.243-58, 2000.

W. Liu and C. Heckman, The sevenfold way of PKC regulation, Cellular signalling, vol.10, issue.8, p.9794251, 1998.

P. K. Lauf and N. C. Adragna, K-Cl cotransport; properties and molecular mechanism, Cellular Physiology and Biochemistry, vol.10, pp.341-54, 2000.

L. Yassin, S. Radtke-schuller, H. Asraf, B. Grothe, M. Hershfinkel et al., Nitric oxide signaling modulates synaptic inhibition in the superior paraolivary nucleus (SPN) via cGMP-dependent suppression of KCC2, vol.8, p.65, 2014.

T. A. Chew, B. J. Orlando, J. Zhang, N. R. Latorraca, A. Wang et al., Structure and mechanism of the cation-chloride cotransporter NKCC1, vol.572, pp.488-92, 2019.

S. Liu, S. Chang, B. Han, L. Xu, M. Zhang et al., Cryo-EM structures of the human cation-chloride cotransporter KCC1, vol.366, pp.505-513, 2019.

E. Delpire, G. Jjajop, and -. Cp, Cryo-EM structures of Dr NKCC1 and hKCC1: a new milestone in the physiology of cation-chloride cotransporters, vol.318, pp.225-262, 2020.

X. Yang, Q. Wang, and E. Cao, Structure of the human cation-chloride cotransporter NKCC1 determined by single-particle electron cryo-microscopy, vol.11, pp.1-11, 2020.