H. Li, Z. Wang, L. Chen, and X. Huang, Research on Advanced Materials for Li-ion Batteries, Adv. Mater, vol.21, pp.4593-4607, 2009.

V. A. Sugiawati, F. Vacandio, C. Perrin-pellegrino, A. Galeyeva, A. P. Kurbatov et al., Sputtered Porous Li-Fe-P-O Film Cathodes Prepared by Radio Frequency Sputtering for Li-ion Microbatteries, Sci. Rep, vol.9, pp.1-12, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02649153

N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Li-ion battery materials: Present and future, vol.18, pp.252-264, 2015.

R. Kumar, R. Matsuo, K. Kishida, M. M. Abdel-galeil, Y. Suda et al., Homogeneous reduced graphene oxide supported NiO-MnO2 ternary hybrids for electrode material with improved capacitive performance, Electrochim. Acta, vol.303, pp.246-256, 2019.

X. Liu, Z. Huang, S. Woon-oh, B. Zhang, P. Ma et al., Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review, Compos. Sci. Technol, vol.72, pp.121-144, 2012.

L. Li, H. Yang, D. Zhou, and Y. Zhou, Progress in Application of CNTs in Lithium-Ion Batteries, J. Nanomater, 2014.

J. A. Teprovich, J. A. Weeks, P. A. Ward, S. C. Tinkey, C. Huang et al., Hydrogenated C60 as High-Capacity Stable Anode Materials for Li Ion Batteries, ACS Appl. Energy Mater, vol.2, pp.6453-6460, 2019.

L. Qiao, X. Sun, Z. Yang, X. Wang, Q. Wang et al., Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries, Carbon, vol.54, pp.29-35, 2013.

R. Kumar, S. Sahoo, E. Joanni, R. K. Singh, W. K. Tan et al., Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries, Prog. Energy Combust. Sci, p.100786, 2019.

S. K. Yadav, R. Kumar, A. K. Sundramoorthy, R. K. Singh, and C. M. Koo, Simultaneous reduction and covalent grafting of polythiophene on graphene oxide sheets for excellent capacitance retention, RSC Adv, vol.6, pp.52945-52949, 2016.

W. Wang, X. Song, C. Gu, D. Liu, J. Liu et al., A high-capacity NiCo2O4@reduced graphene oxide nanocomposite Li-ion battery anode, J. Alloys Compd, vol.741, pp.223-230, 2018.

R. Kumar, R. K. Singh, A. V. Alaferdov, and S. A. Moshkalev, Rapid and controllable synthesis of Fe3O4 octahedral nanocrystals embedded-reduced graphene oxide using microwave irradiation for high performance lithium-ion batteries, Electrochim. Acta, vol.281, pp.78-87, 2018.

C. Zhang and J. Yu, Morphology-Tuned Synthesis of NiCo2O4-Coated 3D Graphene Architectures Used as Binder-Free Electrodes for Lithium-Ion Batteries, Chem. Eur. J, vol.22, pp.4422-4430, 2016.

Y. Chen, J. Zhu, B. Qu, B. Lu, and Z. Xu, Graphene improving lithium-ion battery performance by construction of NiCo2O4/graphene hybrid nanosheet arrays, Nano Energy, issue.3, pp.88-94, 2014.

C. Wang, X. Wang, C. Lin, and X. S. Zhao, Lithium Titanate Cuboid Arrays Grown on Carbon Fiber Cloth for High-Rate Flexible Lithium-Ion Batteries, Small, vol.15, 2019.

Z. Zhang, M. Zhang, P. Lu, Q. Chen, H. Wang et al., CuO nanorods growth on folded Cu foil as integrated electrodes with high areal capacity for flexible Li-ion batteries, J. Alloys Compd, vol.809, p.151823, 2019.

M. Nasreldin, R. Delattre, M. Ramuz, C. Lahuec, T. Djenizian et al., Flexible Micro-Battery for Powering Smart Contact Lens, Sensors, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02128488

N. Yitzhack, M. Auinat, N. Sezin, and Y. Ein-eli, Carbon nanotube tissue as anode current collector for flexible Li-ion batteries-Understanding the controlling parameters influencing the electrochemical performance, APL Mater, vol.6, p.111102, 2018.

S. Yehezkel, M. Auinat, N. Sezin, D. Starosvetsky, and Y. Ein-eli, Distinct Copper Electrodeposited Carbon Nanotubes (CNT) Tissues as Anode Current Collectors in Li-ion Battery, Electrochim. Acta, vol.229, pp.404-414, 2017.

M. Cai, X. Sun, W. Chen, Z. Qiu, L. Chen et al., Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes/graphite composite as negative electrode, J. Mater. Sci, vol.53, pp.749-758, 2018.

X. Li, J. Liu, Y. Zhang, Y. Li, H. Liu et al., High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application, J. Power Sources, vol.197, pp.238-245, 2012.

N. Aguiló-aguayo, R. Amade, S. Hussain, E. Bertran, and T. Bechtold, New Three-Dimensional Porous Electrode Concept: Vertically-Aligned Carbon Nanotubes Directly Grown on Embroidered Copper Structures, vol.7, p.438, 2017.

X. Peng, X. Qiao, S. Luo, J. Yao, Y. Zhang et al., Modulating Carrier Type for Enhanced Thermoelectric Performance of Single-Walled Carbon Nanotubes/Polyethyleneimine Composites, Polymers, p.1295, 2019.

F. Wang, L. Feng, and M. Lu, Mechanical Properties of Multi-Walled Carbon Nanotube/Waterborne Polyurethane Conductive Coatings Prepared by Electrostatic Spraying, Polymers, vol.11, p.714, 2019.

R. Kumar, R. K. Singh, V. S. Tiwari, A. Yadav, R. Savu et al., Enhanced magnetic performance of iron oxide nanoparticles anchored pristine/ N-doped multi-walled carbon nanotubes by microwave-assisted approach, J. Alloys Compd, vol.695, pp.1793-1801, 2017.

R. Kumar, R. M. Yadav, K. Awasthi, R. S. Tiwari, and O. N. Srivastava, Effect of nitrogen variation on the synthesis of vertically aligned bamboo-shaped c-n nanotubes using sunflower oil, Int. J. Nanosci, vol.10, pp.809-813, 2011.

H. Gao, F. Hou, X. Zheng, J. Liu, A. Guo et al., Electrochemical property studies of carbon nanotube films fabricated by CVD method as anode materials for lithium-ion battery applications, vol.112, pp.1-4, 2015.

G. Hou, D. Chauhan, V. Ng, C. Xu, Z. Yin et al., Gas phase pyrolysis synthesis of carbon nanotubes at high temperature, Mater. Des, vol.132, pp.112-118, 2017.

N. Arora and N. N. Sharma, Arc discharge synthesis of carbon nanotubes: Comprehensive review, Diam. Relat. Mater, vol.50, pp.135-150, 2014.

R. Kumar, R. K. Singh, P. K. Dubey, R. M. Yadav, D. P. Singh et al., Highly zonedependent synthesis of different carbon nanostructures using plasma-enhanced arc discharge technique, J. Nanopart. Res, vol.17, p.24, 2015.

J. Chrzanowska, J. Hoffman, A. Ma?olepszy, M. Mazurkiewicz, T. A. Kowalewski et al., Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength, Phys. Status Solidi B, vol.252, pp.1860-1867, 2015.

C. Schwandt, A. T. Dimitrov, and D. J. Fray, High-yield synthesis of multi-walled carbon nanotubes from graphite by molten salt electrolysis, Carbon, vol.50, pp.1311-1315, 2012.

V. A. Sugiawati, F. Vacandio, Y. Ein-eli, and T. Djenizian, Electrodeposition of polymer electrolyte into carbon nanotube tissues for high performance flexible Li-ion microbatteries, APL Mater, vol.7, p.31506, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02649660

S. Yoon, S. Lee, S. Kim, K. Park, D. Cho et al., Carbon nanotube film anodes for flexible lithium ion batteries, J. Power Sources, vol.279, pp.495-501, 2015.

L. Zou, R. Lv, F. Kang, L. Gan, and W. Shen, Preparation and application of bamboo-like carbon nanotubes in lithium ion batteries, J. Power Sources, vol.184, pp.566-569, 2008.

D. T. Welna, L. Qu, B. E. Taylor, L. Dai, and M. F. Durstock, Vertically aligned carbon nanotube electrodes for lithium-ion batteries, J. Power Sources, vol.196, pp.1455-1460, 2011.

S. Yehezkel, M. Auinat, N. Sezin, D. Starosvetsky, and Y. Ein-eli, Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors, J. Power Sources, vol.312, pp.109-115, 2016.

C. De-las-casas and W. Li, A review of application of carbon nanotubes for lithium ion battery anode material, J. Power Sources, vol.208, pp.74-85, 2012.

S. Lee, H. Song, J. Y. Hwang, and Y. Jeong, Directly-prelithiated carbon nanotube film for high-performance flexible lithium-ion battery electrodes. Fibers Polym, vol.18, pp.2334-2341, 2017.

F. Holtstiege, P. Bärmann, R. Nölle, M. Winter, and T. Placke, Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges, vol.4, p.4, 2018.

D. Di-lecce, P. Andreotti, M. Boni, G. Gasparro, G. Rizzati et al., Multiwalled Carbon Nanotubes Anode in Lithium-Ion Battery with LiCoO2, Li[Ni1/3Co1/3Mn1/3]O2, and LiFe1/4Mn1/2Co1/4PO4 Cathodes, ACS Sustain. Chem. Eng, vol.6, pp.3225-3232, 2018.

I. W. Seong, K. T. Kim, and W. Y. Yoon, Electrochemical behavior of a lithium-pre-doped carbon-coated silicon monoxide anode cell, J. Power Sources, vol.189, pp.511-514, 2009.

N. Liu, L. Hu, M. T. Mcdowell, A. Jackson, and Y. Cui, Prelithiated silicon nanowires as an anode for lithium ion batteries, ACS Nano, vol.5, pp.6487-6493, 2011.

M. G. Scott, A. H. Whitehead, and J. R. Owen, Chemical Formation of a Solid Electrolyte Interface on the Carbon Electrode of a Li-Ion Cell, J. Electrochem. Soc, vol.145, pp.1506-1510, 1998.

Y. Wu, T. Yokoshima, H. Nara, T. Momma, and T. Osaka, A pre-lithiation method for sulfur cathode used for future lithium metal free full battery, J. Power Sources, vol.342, pp.537-545, 2017.

N. Plylahan, M. Letiche, M. K. Barr, and T. Djenizian, All-solid-state lithium-ion batteries based on selfsupported titania nanotubes, Electrochem.Commun, vol.43, pp.121-124, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01418534

I. V. Ferrari, M. Braglia, T. Djenizian, P. Knauth, and M. L. Di-vona, Electrochemically engineered single Liion conducting solid polymer electrolyte on titania nanotubes for microbatteries, J. Power Sources, vol.353, pp.95-103, 2017.

M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep, vol.409, pp.47-99, 2005.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy, Nano Lett, vol.10, pp.751-758, 2010.

V. Aravindan, Y. Lee, and S. Madhavi, Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Li-Ion Batteries, Adv. Energy Mater, vol.7, p.1602607, 2017.

J. Zhao, Z. Lu, N. Liu, H. Lee, M. T. Mcdowell et al., Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents, Nat. Commun, vol.5, p.5088, 2014.

Y. Wan, L. Wang, Y. Chen, X. Xu, Y. Wang et al., A high-performance tin dioxide@carbon anode with a super high initial coulombic efficiency via a primary cell prelithiation process, J. Alloys Compd, vol.740, pp.830-835, 2018.

H. Sun, G. Xin, T. Hu, M. Yu, D. Shao et al., High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries, Nat. Commun, vol.5, pp.1-8, 2014.

Y. Sun, H. Lee, Z. W. Seh, N. Liu, J. Sun et al., High-capacity battery cathode prelithiation to offset initial lithium loss, Nat. Energy, 2016.

Y. Abe, T. Saito, and S. Kumagai, Effect of Prelithiation Process for Hard Carbon Negative Electrode on the Rate and Cycling Behaviors of Lithium-Ion Batteries, vol.4, p.71, 2018.

N. A. Kyeremateng, F. Dumur, P. Knauth, B. Pecquenard, and T. Djenizian, Electropolymerization of copolymer electrolyte into titania nanotube electrodes for high-performance 3D microbatteries, Electrochem. Commun, vol.13, pp.894-897, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00618118

V. A. Sugiawati, F. Vacandio, T. Djenizian, A. Galeyeva, and A. P. Kurbatov, Superior Electrochemical Performance of Electropolymerized Self-Organized TiO2 Nanotubes Fabricated by Anodization of Ti Grid, Front. Phys, vol.7, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02649494

Ó. Vargas, Á. Caballero, and J. Morales, Rodríguez-Castellón, E. Contribution to the Understanding of Capacity Fading in Graphene Nanosheets Acting as an Anode in Full Li-Ion Batteries, ACS Appl. Mater. Interfaces, vol.6, pp.3290-3298, 2014.

, © 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license