M. Armand and J. Tarascon, Building better batteries, Nature, vol.451, pp.652-657, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00258391

V. A. Sugiawati, F. Vacandio, M. Eyraud, P. Knauth, and T. Djenizian,

. Li3fe2, PO4)3 Thin Film Deposited by RF Sputtering as Cathode Material for Li-Ion 280

. Microbatteries, Nanoscale Res Lett, p.11, 2016.

V. A. Sugiawati, F. Vacandio, P. Knauth, and T. Djenizian, Sputter-Deposited Amorphous LiCuPO4 Thin 282 Film as Cathode Material for Li-ion Microbatteries, ChemistrySelect, vol.3, pp.405-409

S. Ferrari, M. Loveridge, S. D. Beattie, M. Jahn, R. J. Dashwood et al., Latest advances in the 285 manufacturing of 3D rechargeable lithium microbatteries, J. Power Sources, vol.286, pp.25-46, 2015.

M. Nasreldin, R. Delattre, M. Ramuz, C. Lahuec, T. Djenizian et al.,

, Flexible Micro-Battery for Powering Smart Contact Lens, Sensors, vol.19, p.2062, 2019.

S. Zheng, Z. Wu, F. Zhou, X. Wang, J. Ma et al., All-solid-state planar integrated 289 lithium ion micro-batteries with extraordinary flexibility and high-temperature performance, Nano Energy, vol.290, pp.613-620, 2018.

J. Oudenhoven, L. Baggetto, and P. Notten, All-Solid-State Lithium-Ion Microbatteries: A 292 Review of Various Three-Dimensional Concepts, Adv. Energy Mater, vol.1, pp.10-33, 2011.

A. , R. D. Bowen, C. R. Stevens, R. Allsopp, and D. , Macro, micro and 294 nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte, J.Mater. Sci.e, vol.295, pp.6729-6734, 2007.

H. Fraoucene, V. A. Sugiawati, D. Hatem, M. S. Belkaid, F. Vacandio et al., , p.297

T. Djenizian, Optical and Electrochemical Properties of Self-Organized TiO2 Nanotube Arrays 298 From Anodized Ti?6Al?4V Alloy, Front Chem, p.7, 2019.

P. Roy, S. Berger, and P. Schmuki, TiO2 nanotubes: Synthesis and applications, Angew. Chem. Int. Ed, vol.300, pp.2904-2939, 2011.

J. Krysa, K. Lee, S. Pausova, S. Kment, Z. Hubicka et al., Self-organized 302 transparent 1D TiO2 nanotubular photoelectrodes grown by anodization of sputtered and 303 evaporated Ti layers: A comparative photoelectrochemical study, Chem.Eng. J, vol.308, pp.745-304, 2017.

V. Galstyan, A. Vomiero, E. Comini, G. Faglia, and G. Sberveglieri, TiO2 nanotubular and nanoporous 306 arrays by electrochemical anodization on different substrates, vol.1, pp.1038-1044, 2011.

M. Assefpour-dezfuly, C. Vlachos, and E. H. Andrews, Oxide morphology and adhesive bonding on 308 titanium surfaces, J. Mater. Sci, vol.19, pp.3626-3639, 1984.

V. Zwilling, E. Darque-ceretti, A. Boutry-forveille, D. David, M. Y. Perrin et al., Structure 310 and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface Anal, vol.311, pp.629-637, 1999.

, Enhanced Electrochemical Performance of Electropolymerized Self-Organized TiO2 Nanotubes Fabricated by Anodization of Ti Grid 16

X. Zhou, N. Liu, and P. Schmuki, Photocatalysis with TiO2 Nanotubes, Colorful" Reactivity, p.313

, Designing Site-Specific Photocatalytic Centers into TiO2 Nanotubes, ACS Catal, vol.7, pp.3210-314, 2017.

V. Galstyan, E. Comini, C. Baratto, M. Ferroni, N. Poli et al., , p.316

G. Sberveglieri, Two-phase Titania Nanotubes for Gas Sensing, Procedia Eng, vol.87, pp.176-317, 2014.

K. Shankar, G. K. Mor, H. E. Prakasam, O. K. Varghese, and C. A. Grimes, Self-Assembled Hybrid, vol.319

, Polymer?TiO2 Nanotube Array Heterojunction Solar Cells, Langmuir, vol.23, pp.12445-12449, 2007.

B. L. Ellis, P. Knauth, and T. Djenizian, Three-Dimensional Self-Supported Metal Oxides for Advanced 321 Energy Storage, Adv. Mater, vol.26, pp.3368-3397, 2014.

N. Plylahan, M. Letiche, S. Barr, M. K. Ellis, B. Maria et al., , p.323

T. Djenizian, High energy and power density TiO2 nanotube electrodes for single and complete 324 lithium-ion batteries, J. Power Sources, vol.273, pp.1182-1188, 2015.

J. M. Macák, H. Tsuchiya, and P. Schmuki, High-aspect-ratio TiO2 nanotubes by anodization of 326 titanium, Angew. Chem. Int.Ed, vol.44, pp.2100-2102, 2005.

H. Sopha, G. D. Salian, R. Zazpe, J. Prikryl, L. Hromadko et al.,

, Coated TiO2 Nanotube Layers as Anodes for Lithium-Ion Batteries, ACS Omega, vol.2, pp.2749-329, 2017.

G. D. Salian, M. Krbal, H. Sopha, C. Lebouin, M. Coulet et al., , p.331

J. M. Macak and T. Djenizian, Self-supported sulphurized TiO2 nanotube layers as positive electrodes 332 for lithium microbatteries, Appl. Mater. Today, vol.16, pp.257-264, 2019.

G. D. Salian, B. M. Koo, C. Lefevre, T. Cottineau, C. Lebouin et al., , p.334

T. Djenizian, Niobium Alloying of Self-Organized TiO2 Nanotubes as an Anode for Lithium-Ion 335

. Microbatteries, Adv. Mater.Technol, vol.3, p.1700274, 2018.

Q. Zeng, M. Xi, W. Xu, and X. Li, Preparation of titanium dioxide nanotube arrays on titanium 337 mesh by anodization in (NH4)2SO4/NH4F electrolyte, Mater. Corros, vol.64, pp.1001-1006, 2013.

K. Gulati, A. Santos, D. Findlay, and D. Losic, Optimizing Anodization Conditions for the Growth of 339

, Titania Nanotubes on Curved Surfaces. J. Phys. Chem. C, vol.119, pp.16033-16045, 2015.

W. He, J. Qiu, F. Zhuge, X. Li, J. Lee et al., Advantages of using Ti-341 mesh type electrodes for flexible dye-sensitized solar cells, Nanotechnology, vol.23, p.225602, 2012.

K. Y. Chun, B. W. Park, Y. M. Sung, D. J. Kwak, Y. T. Hyun et al., Fabrication of dye-sensitized 343 solar cells using TiO2-nanotube arrays on Ti-grid substrates, Thin Solid Films, vol.517, pp.4196-344, 2009.

M. Gerosa, A. Sacco, A. Scalia, F. Bella, A. Chiodoni et al.,

, Totally Flexible Dye-Sensitized Solar Cells Based on Titanium Grids and Polymeric Electrolyte, 347 IEEE J.Photovolt, vol.6, pp.498-505, 2016.

, Enhanced Electrochemical Performances of Self-Organized TiO2 Nanotubes Fabricated by Anodization of Ti Grid

Z. Liu, V. Subramania, ). Ravi, and M. Misra, Vertically Oriented TiO2 Nanotube Arrays Grown on Ti 349 Meshes for Flexible Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.113, pp.14028-14033, 2009.

M. Motola, E. Dworniczek, L. Satrapinskyy, G. Chodaczek, J. Grzesiak et al., , p.351

J. Nowicka and G. Plesch, UV light-induced photocatalytic, antimicrobial, and antibiofilm 352 performance of anodic TiO2 nanotube layers prepared on titanium mesh and Ti sputtered on 353 silicon, Chem. Pap, vol.73, pp.1163-1172, 2019.

M. Martin, S. Leonid, R. Tomá?, J. ?. Jaroslav, K. et al.,

, Anatase TiO2 nanotube arrays and titania films on titanium mesh for photocatalytic NOX removal 356 and water cleaning, Catal.Today, vol.287, pp.59-64, 2017.

C. S. Rustomji, C. J. Frandsen, J. S. Tauber, and M. J. , Dye-Sensitized Solar Cell Constructed with 358 Titanium Mesh and 3-D Array of TiO2 Nanotubes, J. Phys. Chem. B, vol.114, pp.14537-14543, 2010.

J. Liao, S. Lin, L. Zhang, N. Pan, X. Cao et al., Photocatalytic Degradation of Methyl Orange Using 360 a TiO2/Ti Mesh Electrode with 3D Nanotube Arrays, ACS Appl. Mater. Interfaces, vol.4, pp.171-361, 2012.

S. Ozkan, N. T. Nguyen, A. Mazare, I. Cerri, and P. Schmuki, Controlled spacing of self-organized anodic 363 TiO2 nanotubes, Electrochem. Commun, vol.69, pp.76-79, 2016.

N. Plylahan, M. Letiche, M. Barr, and T. Djenizian, All-solid-state lithium-ion batteries based on 365 self-supported titania nanotubes, Electrochem. Commun, vol.43, pp.121-124, 2014.

J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki,

, Angew. Chem. Int. Ed, vol.44, pp.7463-7465, 2005.

J. M. Macak and P. Schmuki, Anodic growth of self-organized anodic TiO2 nanotubes in viscous 369 electrolytes, Electrochim. Acta, vol.52, pp.1258-1264, 2006.

Y. Lynch, R. Kim, D. Roy, P. Schmuki, and P. , TiO2 Nanotubes: Efficient Suppression of Top 371 Etching during Anodic Growth Key to Improved High Aspect Ratio Geometries, Electrochem 372 Solid-State Lett, vol.12, pp.17-20, 2009.

R. Kirchgeorg, M. Kallert, N. Liu, R. Hahn, M. S. Killian et al., Key factors for an improved 374 lithium ion storage capacity of anodic TiO2 nanotubes, Electrochim. Acta, vol.198, pp.56-65, 2016.

G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, A review on highly ordered, 376 vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy 377 applications, Sol. Energ. Mat. Sol.C, vol.90, pp.2011-2075, 2006.

M. Altomare, M. Pozzi, M. Allieta, L. G. Bettini, and E. Selli, H2 and O2 photocatalytic production on 379

, TiO2 nanotube arrays: Effect of the anodization time on structural features and photoactivity

, Appl.Catal. B: Environmental, pp.81-88, 2013.

Z. Liu, Q. Zhang, T. Zhao, J. Zhai, and L. Jiang, 3-D vertical arrays of TiO2 nanotubes on Ti meshes: 382 Efficient photoanodes for water photoelectrolysis, J. Mater. Chem, vol.21, pp.10354-10358, 2011.

, Enhanced Electrochemical Performance of Electropolymerized Self-Organized TiO2 Nanotubes Fabricated by Anodization of Ti Grid

Z. Zhang, Q. Zeng, S. Chou, X. Li, H. Li et al., Tuning three-384 dimensional TiO2 nanotube electrode to achieve high utilization of Ti substrate for lithium 385 storage, Electrochim. Acta, vol.133, pp.570-577, 2014.

I. V. Ferrari, M. Braglia, T. Djenizian, P. Knauth, D. Vona et al., , p.387

, Li-ion conducting solid polymer electrolyte on titania nanotubes for microbatteries, J.Power, vol.388, pp.95-103, 2017.

G. D. Salian, C. Lebouin, A. Demoulin, M. S. Lepihin, S. Maria et al., , vol.46, p.390

T. Djenizian, Electrodeposition of polymer electrolyte in nanostructured electrodes for enhanced 391 electrochemical performance of thin-film Li-ion microbatteries, J.Power Sources, vol.392, pp.242-246, 2017.

N. Plylahan, S. Maria, T. N. Phan, M. Letiche, H. Martinez et al.,

, Enhanced electrochemical performance of Lithium-ion batteries by conformal coating of polymer 395 electrolyte, Nanoscale Res. Lett, vol.9, p.544, 2014.

. Sugiawati, . Va, F. Vacandio, Y. Ein-eli, and T. Djenizian, Electrodeposition of polymer electrolyte into 397 carbon nanotube tissues for high performance flexible Li-ion microbatteries, APL Mater, pp.398-405, 2019.

M. Braglia, I. V. Ferrari, T. Djenizian, S. Kaciulis, P. Soltani et al., , p.400

, Electrochemical Deposition of Poly(styrene sulfonate) on Nanoarchitectured Electrodes, ACS, vol.401

, Appl. Mater. Interfaces, vol.9, pp.22902-22910, 2017.

N. Plylahan, M. Letiche, S. Barr, M. K. Ellis, B. Maria et al., , p.403

T. Djenizian, High energy and power density TiO2 nanotube electrodes for single and complete 404 lithium-ion batteries, J.Power Sources, vol.273, pp.1182-1188, 2015.

G. F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J. L. Tirado et al., Alternative Li-Ion Battery 406

, Electrode Based on Self-Organized Titania Nanotubes, Chem Mater, vol.21, pp.63-67, 2009.