J. R. Varcoe and R. C. Slade, Prospects for alkaline anion-exchange membranes in low temperature fuel cells, Fuel Cells, vol.5, issue.2, pp.187-200, 2005.

J. Jagur-grodzinski, Polymeric materials for fuel cells: concise review of recent studies, Polym. Adv. Technol, vol.18, issue.10, pp.785-799, 2007.

G. Merle, M. Wessling, and K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: a review, J. Membr. Sci, vol.377, issue.1-2, pp.1-35, 2011.

G. Couture, A. Alaaeddine, F. Boschet, and B. Ameduri, Polymeric materials as anionexchange membranes for alkaline fuel cells, Prog. Polym. Sci, vol.36, issue.11, pp.1521-1557, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00594264

B. Bauer, H. Strathmann, and F. Effenberger, Anion-exchange membranes with improved alkaline stability, Desalination, vol.79, issue.2-3, pp.125-144, 1990.

Z. F. Pan, L. An, T. S. Zhao, and Z. K. Tang, Advances and challenges in alkaline anion exchange membrane fuel cells, Prog. Energy Combust. Sci, vol.66, pp.141-175, 2018.

T. Palaniselvam, V. Kashyap, S. N. Bhange, J. B. Baek, and S. Kurungot, Nanoporous graphene enriched with Fe/Co-N active sites as a promising oxygen reduction Fig. 13. Model reagents and products for DFT calculations

R. Becerra-arciniegas, electrocatalyst for anion exchange membrane fuel cells, Adv. Funct. Mater, vol.26, issue.13, pp.2150-2162, 2016.

K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology, Chem. Rev, vol.104, issue.10, pp.4637-4678, 2004.

P. Knauth, E. Sgreccia, A. Donnadio, M. Casciola, M. L. Di et al., Water activity coefficient and proton mobility in hydrated acidic polymers, J. Electrochem. Soc, vol.158, issue.2, pp.159-165, 2011.

P. Knauth, M. L. Di, and . Vona, Sulfonated aromatic ionomers: analysis of proton conductivity and proton mobility, Solid State Ion, vol.225, pp.255-259, 2012.

M. G. Marino, J. P. Melchior, A. Wohlfarth, and K. D. Kreuer, Hydroxide, halide and water transport in a model anion exchange membrane, J. Membr. Sci, vol.464, pp.61-71, 2014.

Y. Pan, Q. D. Zhang, X. M. Yan, J. F. Liu, X. W. Xu et al., Hydrophilic side chain assisting continuous ionconducting channels for anion exchange membranes, J. Membr. Sci, vol.552, pp.286-294, 2018.

J. Cheng, G. H. He, and F. X. Zhang, A mini-review on anion exchange membranes for fuel cell applications: stability issue and addressing strategies, Int. J. Hydrogen Energy, vol.40, issue.23, pp.7348-7360, 2015.

M. A. Hickner, A. M. Herring, and E. B. Coughlin, Anion exchange membranes: current status and moving forward, J. Polym. Sci. B Polym. Phys, vol.51, issue.24, pp.1727-1735, 2013.

X. Chu, L. Liu, Y. Huang, M. D. Guiver, and N. Li, Practical implementation of bis-sixmembered N-cyclic quaternary ammonium cations in advanced anion exchange membranes for fuel cells: synthesis and durability, J. Membr. Sci, vol.578, pp.239-250, 2019.

M. G. Marino and K. D. Kreuer, Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids, Chemsuschem, vol.8, issue.3, pp.513-523, 2015.

J. J. Chen, C. P. Li, J. C. Wang, L. Li, and Z. D. Wei, A general strategy to enhance the alkaline stability of anion exchange membranes, J. Mater. Chem, vol.5, issue.13, pp.6318-6327, 2017.

Y. Ye and Y. A. Elabd, Chemical stability of anion exchange membranes for alkaline fuel cells, Polymers for Energy Storage and Delivery: Polyelectrolytes for Batteries and Fuel Cells, vol.1096, pp.233-251, 2012.

A. D. Mohanty, S. E. Tignor, J. A. Krause, Y. Choe, and C. Bae, Systematic alkaline stability study of polymer backbones for anion exchange membrane applications, Macromolecules, vol.49, issue.9, pp.3361-3372, 2016.

J. Y. Jeon, S. Park, J. Han, S. Maurya, A. D. Mohanty et al., Synthesis of aromatic anion exchange membranes by friedel-crafts bromoalkylation and crosslinking of polystyrene block copolymers, Macromolecules, vol.52, issue.5, pp.2139-2147, 2019.

M. L. Di-vona, R. Narducci, L. Pasquini, K. Pelzer, and P. Knauth, Anion-conducting ionomers: study of type of functionalizing amine and macromolecular crosslinking, Int. J. Hydrogen Energy, vol.39, issue.26, pp.14039-14049, 2014.

R. Pizzoferrato, E. Ciotta, I. V. Ferrari, R. Narducci, L. Pasquini et al., Layered double hydroxides containing an ionic liquid: ionic conductivity and use in composite anion exchange membranes, Chemelectrochem, vol.5, issue.19, pp.2781-2788, 2018.

L. Pasquini, M. L. Di-vona, and P. Knauth, Effects of anion substitution on hydration, ionic conductivity and mechanical properties of anion-exchange membranes, New J. Chem, vol.40, issue.4, pp.3671-3676, 2016.

S. Gu, J. Skovgard, and Y. S. Yan, Engineering the van der Waals interaction in crosslinking-free hydroxide exchange membranes for low swelling and high conductivity, Chemsuschem, vol.5, issue.5, pp.843-848, 2012.

M. L. Di-vona, M. Casciola, A. Donnadio, M. Nocchetti, L. Pasquini et al., Anionic conducting composite membranes based on aromatic polymer and layered double hydroxides, Int. J. Hydrogen Energy, vol.42, issue.5, pp.3197-3205, 2017.

L. Pasquini, F. Ziarelli, S. Viel, M. L. Di-vona, and P. Knauth, Fluoride-ion-conducting polymers: ionic conductivity and fluoride ion diffusion coefficient in quaternized polysulfones, ChemPhysChem, vol.16, issue.17, pp.3631-3636, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01415953

M. Manohar, A. K. Das, and V. K. Shahi, Alternative preparative route for efficient and stable anion-exchange membrane for water desalination by electrodialysis, Desalination, vol.413, pp.101-108, 2017.

D. R. Dekel, M. Arnar, S. Willdorf, M. Kosa, S. Dhara et al., Effect of water on the stability of quaternary ammonium groups for anion exchange membrane fuel cell applications, Chem. Mater, vol.29, issue.10, pp.4425-4431, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01533567

J. Yang, C. Liu, Y. Hao, X. He, and R. He, Preparation and investigation of various imidazolium-functionalized poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes, Electrochim. Acta, vol.207, pp.112-119, 2016.

A. Katzfuss, V. Gogel, L. Jorissen, and J. Kerres, The application of covalently crosslinked BrPPO as AEM in alkaline DMFC, J. Membr. Sci, vol.425, pp.131-140, 2013.

F. L. Greenwood and M. D. Sedlak, 4-Bromo-2-heptene, Organic syntheses, Collec. Vol. Sci. Pap, vol.4, p.108, 1963.

M. L. Di-vona, G. Alberti, E. Sgreccia, M. Casciola, and P. Knauth, High performance sulfonated aromatic ionomers by solvothermal macromolecular synthesis, Int. J. Hydrogen Energy, vol.37, issue.10, pp.8672-8680, 2012.

G. Gebel, Structure of membranes for fuel cells: SANS and SAXS analyses of sulfonated PEEK membranes and solutions, Macromolecules, vol.46, issue.15, pp.6057-6066, 2013.

K. D. Kreuer and G. Portale, A critical revision of the nano-morphology of proton conducting ionomers and polyelectrolytes for fuel cell applications, Adv. Funct. Mater, vol.23, issue.43, pp.5390-5397, 2013.

H. Mendil-jakani, I. Z. Lopez, P. M. Legrand, V. H. Mareau, and L. Gonon, A new interpretation of SAXS peaks in sulfonated poly(ether ether ketone) (sPEEK) membranes for fuel cells, Phys. Chem. Chem. Phys, vol.16, issue.23, pp.11228-11235, 2014.

H. S. Dang and P. Jannasch, A comparative study of anion-exchange membranes tethered with different hetero-cycloaliphatic quaternary ammonium hydroxides, J. Mater. Chem, vol.5, issue.41, pp.21965-21978, 2017.

K. Vezzu, A. M. Maes, F. Bertasi, A. R. Motz, T. H. Tsai et al., Interplay between hydroxyl density and relaxations in poly (vinylbenzyltrimethylammonium)-b-poly(methylbutylene) membranes for electrochemical applications, J. Am. Chem. Soc, vol.140, issue.4, pp.1372-1384, 2018.

D. Marx, A. Chandra, and M. E. Tuckerman, Aqueous basic solutions: hydroxide solvation, structural diffusion, and comparison to the hydrated proton, Chem. Rev, vol.110, issue.4, pp.2174-2216, 2010.

J. Jachowicz, M. Kryszewski, and P. Kowalski, Thermal-degradation of poly(2,6-dimethyl-1,4-phenylene oxide).1 Mechanism of degradation, J. Appl. Polym. Sci, vol.22, issue.10, pp.2891-2899, 1978.

R. P. Singh, Thermal-degradation and stabilization of poly(2,6-dimethyl-1,4-phenylene oxide), Eur. Polym. J, vol.18, issue.2, pp.117-122, 1982.

D. L. Vien, The Handbook of Infrared and Raman Frequencies of Organic Molecules, 1992.

C. G. Arges, L. Wang, M. Jung, and V. Ramani, Mechanically stable poly(arylene ether) anion exchange membranes prepared from commercially available polymers for alkaline electrochemical devices, J. Electrochem. Soc, vol.162, issue.7, pp.686-693, 2015.

J. F. Zhou, M. Unlu, J. A. Vega, and P. A. Kohl, Anionic polysulfone ionomers and membranes containing fluorenyl groups for anionic fuel cells, J. Power Sources, vol.190, issue.2, pp.285-292, 2009.

G. F. Ehlers, K. R. Fisch, and W. R. Powell, Thermal degradation of polymers with phenylene units in the chain. I. Polyphenylenes and poly(phenylene oxides), J. Polym. Sci. A 1 Polym. Chem, vol.7, issue.10, pp.2931-2953, 1969.

C. G. Arges, L. H. Wang, J. Parrondo, and V. Ramani, Best practices for investigating anion exchange membrane suitability for alkaline electrochemical devices: case study using quaternary ammonium poly(2,6-dimethyl 1,4-phenylene)oxide anion exchange membranes, J. Electrochem. Soc, vol.160, issue.11, pp.1258-1274, 2013.

M. Zhang, J. L. Liu, Y. G. Wang, L. A. An, M. D. Guiver et al., Highly stable anion exchange membranes based on quaternized polypropylene, J. Mater. Chem, vol.3, issue.23, pp.12284-12296, 2015.

M. Tanaka, M. Koike, K. Miyatake, and M. Watanabe, Synthesis and properties of anion conductive ionomers containing fluorenyl groups for alkaline fuel cell applications, Polym. Chem, vol.2, issue.1, pp.99-106, 2011.

X. G. Li, High-resolution thermogravimetry of poly(2,6-dimethyl-1,4-phenylene oxide), J. Appl. Polym. Sci, vol.71, issue.11, pp.1887-1892, 1999.

H. S. Dang and P. Jannasch, Exploring different cationic alkyl side chain designs for enhanced alkaline stability and hydroxide ion conductivity of anion-exchange membranes, Macromolecules, vol.48, issue.16, pp.5742-5751, 2015.

R. C. Bopp, U. Gaur, R. P. Kambour, and B. Wunderlich, Effect of bromination on the thermal-properties of poly(2,6-dimethyl-1,4-phenylene oxide), J. Therm. Anal, vol.25, issue.2, pp.243-258, 1982.

S. H. Goh and S. Y. Lee, Thermal-stability of bromobenzylated poly(2,6-dimethyl-1,4-phenylene oxide), Thermochim. Acta, vol.120, pp.293-298, 1987.

J. Parrondo, Z. Y. Wang, M. S. Jung, and V. Ramani, Reactive oxygen species accelerate degradation of anion exchange membranes based on polyphenylene oxide in alkaline environments, Phys. Chem. Chem. Phys, vol.18, issue.29, pp.19705-19712, 2016.

M. Liang, Poly(phenylene oxide), vol.3, 2011.

C. G. Arges and V. Ramani, Two-dimensional NMR spectroscopy reveals cationtriggered backbone degradation in polysulfone-based anion exchange membranes, Proc. Natl. Acad. Sci. U.S.A, vol.110, issue.7, pp.2490-2495, 2013.

S. Chempath, B. R. Einsla, L. R. Pratt, C. S. Macomber, J. M. Boncella et al., Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes, J. Phys. Chem. C, vol.112, issue.9, pp.3179-3182, 2008.

S. Chempath, J. M. Boncella, L. R. Pratt, N. Henson, and B. S. Pivovar, Density functional theory study of degradation of tetraalkylammonium hydroxides, J. Phys. Chem. C, vol.114, issue.27, pp.11977-11983, 2010.

H. Long, K. Kim, and B. S. Pivovar, Hydroxide degradation pathways for substituted trimethylammonium cations: a DFT study, J. Phys. Chem. C, vol.116, issue.17, pp.9419-9426, 2012.

Y. K. Choe, C. Fujimoto, K. S. Lee, L. T. Dalton, K. Ayers et al., Alkaline stability of benzyl trimethyl ammonium functionalized polyaromatics: a computational and experimental study, Chem. Mater, vol.26, issue.19, pp.5675-5682, 2014.

M. J. Frisch, Gaussian 16, Revision C.01, 2016.

V. J. Bharath, R. Jervis, J. Millichamp, T. P. Neville, T. Mason et al., Alkaline anion exchange membrane degradation as a function of humidity measured using the quartz crystal microbalance, Int. J. Hydrogen Energy, vol.42, issue.9, pp.6243-6249, 2017.

M. L. Di-vona, L. Pasquini, R. Narducci, K. Pelzer, A. Donnadio et al., Cross-linked sulfonated aromatic ionomers via SO2 bridges: conductivity properties, J. Power Sources, vol.243, pp.488-493, 2013.

L. Pasquini, O. Wacrenier, M. L. Vona, and P. Knauth, Hydration and ionic conductivity of model cation and anion-conducting ionomers in buffer solutions (phosphate, acetate, citrate), J. Phys. Chem. B, vol.122, issue.50, pp.12009-12016, 2018.

R. Narducci, M. L. Di-vona, and P. Knauth, Cation-conducting ionomers made by ion exchange of sulfonated poly-ether-ether-ketone: hydration, mechanical and thermal properties and ionic conductivity, J. Membr. Sci, vol.465, pp.185-192, 2014.