G. Merle, M. Wessling, and K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, J. Membr. Sci, vol.377, pp.1-35, 2011.

Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, vol.88, pp.981-1007, 2011.

G. Couture, A. Alaaeddine, F. Boschet, and B. Ameduri, Polymeric materials as anion-exchange membranes for alkaline fuel cells, Prog. Polym. Sci, vol.36, pp.1521-1557, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00594264

E. J. Park and Y. S. Kim, Quaternized aryl ether-free polyaromatics for alkaline membrane fuel cells: Synthesis, properties, and performance-A topical review, J. Mater. Chem. A, vol.6, pp.15456-15477, 2018.

Z. F. Pan, L. An, T. S. Zhao, and Z. K. Tang, Advances and challenges in alkaline anion exchange membrane fuel cells, Prog. Energy Combust. Sci, vol.66, pp.141-175, 2018.

V. Vijayakumar and S. Y. Nam, Recent advancements in applications of alkaline anion exchange membranes for polymer electrolyte fuel cells, J. Ind. Eng. Chem, vol.70, pp.70-86, 2019.

M. A. Hickner, A. M. Herring, and E. B. Coughlin, Anion Exchange Membranes: Current Status and Moving Forward, J. Polym. Sci. Part B Polym. Phys, vol.51, pp.1727-1735, 2013.

K. M. Hugar, H. A. Kostalik, and G. W. Coates, Imidazolium Cations with Exceptional Alkaline Stability: A Systematic Study of Structure-Stability Relationships, J. Am. Chem. Soc, vol.137, pp.8730-8737, 2015.

M. G. Marino and K. D. Kreuer, Alkaline Stability of Quaternary Ammonium Cations for Alkaline Fuel Cell Membranes and Ionic Liquids, ChemSusChem, vol.8, pp.513-523, 2015.

L. Pasquini, M. L. Di-vona, and P. Knauth, Effects of anion substitution on hydration, ionic conductivity and mechanical properties of anion-exchange membranes, New J. Chem, vol.40, pp.3671-3676, 2016.

Z. Sun, J. Pan, J. N. Guo, and F. Yan, The Alkaline Stability of Anion Exchange Membrane for Fuel Cell Applications: The Effects of Alkaline Media, Adv. Sci, vol.5, 2018.

J. J. Han, J. Pan, C. Chen, L. Wei, Y. Wang et al., Effect of Micromorphology on Alkaline Polymer Electrolyte Stability, ACS Appl. Mater. Interfaces, vol.11, pp.469-477, 2019.

M. Liang, In Handbook of Engineering and Specialty Thermoplastics

S. Thomas and P. M. Visakh, , vol.3, pp.15-54, 2011.

C. G. Arges, L. H. Wang, J. Parrondo, and V. Ramani, Best Practices for Investigating Anion Exchange Membrane Suitability for Alkaline Electrochemical Devices: Case Study Using Quaternary Ammonium Poly(2,6-dimethyl 1,4-phenylene)oxide Anion Exchange Membranes, J. Electrochem. Soc, vol.160, pp.1258-1274, 2013.

A. D. Mohanty, S. E. Tignor, J. A. Krause, Y. K. Choe, and C. Bae, Systematic Alkaline Stability Study of Polymer Backbones for Anion Exchange Membrane Applications, Macromolecules, vol.49, pp.3361-3372, 2016.

A. Amel, N. Yitzhack, A. Beylin, J. Pan, M. A. Hickner et al., Chemical and Thermal Stability of Poly(phenylene oxide)-Based Anion Exchange Membranes Containing Alkyl Side Chains, J. Electrochem. Soc, vol.165, pp.1133-1138, 2018.

H. S. Dang and P. Jannasch, Exploring Different Cationic Alkyl Side Chain Designs for Enhanced Alkaline Stability and Hydroxide Ion Conductivity of Anion-Exchange Membranes, Macromolecules, vol.48, pp.5742-5751, 2015.

H. Dang and P. Jannasch, A comparative study of anion-exchange membranes tethered with different hetero-cycloaliphatic quaternary ammonium hydroxides, J. Mater. Chem. A, vol.5, pp.21965-21978, 2017.

J. Pan, J. J. Han, L. Zhu, and M. A. Hickner, Cationic Side-Chain Attachment to Poly(Phenylene Oxide) Backbones for Chemically Stable and Conductive Anion Exchange Membranes, Chem. Mater, vol.29, pp.5321-5330, 2017.

Y. X. Xu, N. Y. Ye, D. J. Zhang, Y. F. Yang, J. S. Yang et al., Imidazolium functionalized poly(aryl ether ketone) anion exchange membranes having star main chains or side chains, Renew. Energy, vol.127, pp.910-919, 2018.

M. M. Hossain, J. Q. Hou, L. Wu, Q. Q. Ge, X. Liang et al., Anion exchange membranes with clusters of alkyl ammonium group for mitigating water swelling but not ionic conductivity, J. Membr. Sci, vol.550, pp.101-109, 2018.

S. Chempath, B. R. Einsla, L. R. Pratt, C. S. Macomber, J. M. Boncella et al., Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes, J. Phys. Chem. C, vol.112, pp.3179-3182, 2008.

C. G. Arges and V. Ramani, Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes, Proc. Natl. Acad. Sci, vol.110, pp.2490-2495, 2013.

H. Long, K. Kim, and B. S. Pivovar, Hydroxide Degradation Pathways for Substituted Trimethylammonium Cations: A DFT Study, J. Phys. Chem. C, vol.116, pp.9419-9426, 2012.

J. A. Vega, C. Chartier, and W. E. Mustain, Effect of hydroxide and carbonate alkaline media on anion exchange membranes, J. Power Sources, vol.195, pp.7176-7180, 2010.

D. Vona, M. L. Narducci, R. Pasquini, L. Pelzer, K. Knauth et al., Anion-conducting ionomers: Study of type of functionalizing amine and macromolecular cross-linking, Int. J. Hydrog. Energy, vol.39, pp.14039-14049, 2014.

M. P. Coles, Bicyclic-guanidines, -guanidinates and -guanidinium salts: Wide ranging applications from a simple family of molecules, Chem. Commun, vol.25, pp.3659-3676, 2009.

I. Kaljurand, A. Kutt, L. Soovali, T. Rodima, V. Maemets et al., Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pK(a) units: Unification of different basicity scales, J. Org. Chem, vol.70, pp.1019-1028, 2005.

M. K. Kiesewetter, M. D. Scholten, N. Kirn, R. L. Weber, J. L. Hedrick et al., Cyclic Guanidine Organic Catalysts: What Is Magic About Triazabicyclodecene?, J. Org. Chem, vol.74, pp.9490-9496, 2009.

D. Vona, M. L. Casciola, M. Donnadio, A. Nocchetti, M. Pasquini et al., Anionic conducting composite membranes based on aromatic polymer and layered double hydroxides, Int. J. Hydrog. Energy, vol.42, pp.3197-3205, 2017.

R. Pizzoferrato, E. Ciotta, I. V. Ferrari, R. Narducci, L. Pasquini et al., Layered Double Hydroxides Containing an Ionic Liquid: Ionic Conductivity and Use in Composite Anion Exchange Membranes, vol.5, pp.2781-2788, 2018.

J. R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems, 1987.

T. Lippert, A. Wokaun, J. Dauth, and O. Nuyken, NMR-studies of hindered rotation and thermal-decomposition of novel 1-aryl-3,3-dialkyltriazenes, Magn. Reson. Chem, vol.30, pp.1178-1185, 1992.

K. M. Yu, I. Curcic, J. Gabriel, H. Morganstewart, and S. C. Tsang, Catalytic Coupling of CO 2 with Epoxide Over Supported and Unsupported Amines, J. Phys. Chem. A, vol.114, pp.3863-3872, 2010.

G. F. Ehlers, K. R. Fisch, and W. R. Powell, Thermal degradation of polymers with phenylene units in the chain. I. Polyphenylenes and poly(phenylene oxides), J. Polym. Sci. Part A Polym. Chem, vol.7, pp.2931-2953, 1969.

X. G. Li, High-resolution thermogravimetry of poly(2,6-dimethyl-1,4-phenylene oxide), J. Appl. Polym. Sci, vol.71, pp.1887-1892, 1999.

K. Kaupmees, A. Trummal, and I. Leito, Basicities of Strong Bases in Water: A Computational Study, Croat. Chem. Acta, vol.87, pp.385-395, 2014.

F. A. Chowdhury, H. Yamada, T. Higashii, K. Goto, and M. Onoda, CO 2 Capture by Tertiary Amine Absorbents: A Performance Comparison Study, Ind. Eng. Chem. Res, vol.52, pp.8323-8331, 2013.

P. Knauth, E. Sgreccia, A. Donnadio, M. Casciola, and M. L. Di-vona, Water Activity Coefficient and Proton Mobility in Hydrated Acidic Polymers, J. Electrochem. Soc, vol.158, 2011.

P. Knauth, L. Pasquini, B. Maranesi, K. Pelzer, R. Polini et al., Proton Mobility in Sulfonated PolyEtherEtherKetone (SPEEK): Influence of Thermal Crosslinking and Annealing, Fuel Cells, vol.13, pp.79-85, 2013.

P. Knauth and M. L. Di-vona, Sulfonated aromatic ionomers: Analysis of proton conductivity and proton mobility. Solid State Ion, vol.225, pp.255-259, 2012.