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SUMMARY  

Enterobacter is a member of the ESKAPE group that contains the major resistant bacterial 

pathogens. First described in 1960, this group member has proven more complex as a result of 

the exponential evolution of phenotypic and genotypic methods. Today, twenty-two species 

belong to the Enterobacter genus. These species are described in the environment and have 

been reported as opportunistic pathogens in plants, animals and humans. The 

pathogenicity/virulence of this bacterium remains rather unclear due to the limited number of 

works performed to date in this field. In contrast, its resistance against antibacterial agents has 

been extensively studied. In the face of antibiotic treatment, it is able to manage different 

mechanisms of resistance via various local and global regulator genes and the modulation of 

the expression of different proteins, including enzymes (ß-lactamases, etc.) or membrane 

transporters, such as porins and efflux pumps. During various hospital outbreaks, the 

Enterobacter aerogenes and E. cloacae complex exhibited a multidrug resistant phenotype 

that has stimulated questions about the role of cascade regulation in the emergence of these 

well-adapted clones.  

 

KEYWORDS Enterobacter spp., epidemiology, multidrug resistance, efflux, impermeability, 

clinical aspects, -lactamases, pathogenicity, diagnosis  
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INTRODUCTION  

The genus Enterobacter includes facultative anaerobic Gram-negative bacilli that are 2 mm 

long, motile by peritrichous flagella and belong to the family Enterobacteriaceae. It was first 

described in 1960, but changes in taxonomy have occurred in the last 50 years (1). For 

example, E. sakazakii has been reassigned to a new genus Cronobacter (2).  

To date, twenty-two species are found in the genus Enterobacter: E. aerogenes, E. 

amnigenus, E. arachidis, E. asburiae, E. carcinogenus, E. cloacae, E. cowanii, E. dissolvans, 

E. gergoviae, E. helveticus, E. hormaechei, E. kobei, E. ludwigii, E. mori, E. nimipressuralis, 

E. oryzae, E. pulveris, E. pyrinus, E. radicincitans, E. soli, E. taylorae and E. turicensis. 

Among these species, seven are grouped within the Enterobacter cloacae complex group: E. 

cloacae, E. asburiae, E. hormaechei, E. kobei, E. ludwigii, E. mori and E. nimipressuralis. 

This nomenclature is based on the sharing of phenotypic and especially genotypic characters, 

obtained by whole genome DNA-DNA hybridizations. Indeed, these five species share at 

least 60% similarity in their genome with E. cloacae (3).  

The genus Enterobacter is associated with a variety of environmental habitats. These bacteria 

are recovered from soil and water and are endophytic or considered phytopathogens for 

various plant species (4). Some species are frequently associated with bioprocessing and 

metabolic engineering approaches (5, 6). Moreover, Enterobacter spp. are also natural 

commensals of the animal and human gut microbiota. Among these bacteria, only certain 

subspecies/species have been associated with hospital-acquired infections and outbreaks (7 -

12). Enterobacter species are members of ESKAPE (Enterococcus faecium, Staphylococcus 

aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and 

Enterobacter species) which are described as the leading cause of resistant nosocomial 

infections (7, 10, 11, 13-20). Enterobacter aerogenes, E. cloacae and E. hormaechei represent 

the most frequently isolated species described in clinical infections, especially in 

immunocompromised patients and those hospitalized in an ICU (Intensive Care Unit), due to 

https://www.sciencedirect.com/topics/immunology-and-microbiology/enterococcus-faecium
https://www.sciencedirect.com/topics/immunology-and-microbiology/staphylococcus-aureus
https://www.sciencedirect.com/topics/immunology-and-microbiology/staphylococcus-aureus
https://www.sciencedirect.com/topics/immunology-and-microbiology/klebsiella-pneumoniae
https://www.sciencedirect.com/topics/immunology-and-microbiology/acinetobacter-baumannii
https://www.sciencedirect.com/topics/immunology-and-microbiology/pseudomonas-aeruginosa
https://www.sciencedirect.com/topics/immunology-and-microbiology/cloaca
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the adaptation of these species to antimicrobial agents and their behavior as opportunistic 

pathogens. Several hospital outbreaks have been reported in Europe since the mid-1990s, and 

the wide use of extensive broad-spectrum antibiotics has stimulated the spread of resistant 

clones (21-23). These pathogens are frequently associated with a multidrug-resistance 

phenotype, mainly due to their adaptation to the hospital environment and the pathogens’ 

ability to easily acquire numerous genetic mobile elements containing resistance and 

virulence genes. These species have an intrinsic resistance to ampicillin, amoxicillin, first-

generation cephalosporins and cefoxitin due to the expression of a constitutive AmpC β-

lactamase. Moreover the production of extended-spectrum β-lactamases has been reported in 

these bacteria, which make their treatment difficult (24, 25). Antibiotic resistance, regulation 

of resistant genes and the clinical implications of these situations have been extensively 

studied (26-31). 

The accurate identification of species and subspecies remains a challenge. The development 

of genome sequencing has rapidly modified the phylogeny of the genus, particularly that of 

the E. cloacae complex (32-34). Due to use of modern molecular techniques, the genus has 

undergone modifications in classification, and several species have been transferred to and 

from this genus. For example, four species first identified as Enterobacter have been 

reclassified to the genus Kosakonia (E. cowanii; E. arachidis; E. oryzae and E. 

radicinintans), E. intermedium has been reclassified to the genus Kluyvera, and E. sakazakii 

has been reclassified to the genus Cronobacter (2, 35, 36). Moreover, the current taxonomic 

position of E. aerogenes is still discussed. Since 1971, the proposition of reclassification in 

the genus Klebsiella as K. aerogenes or K. mobilis or K. aeromobilis because of its motility 

remains unverified (37). The phenotypic differences between E. aerogenes and the genus 

Klebsiella include motility, the presence of ornithine decarboxylase and the lack of urease 

activity in E. aerogenes. However, results from full genome sequence analysis confirmed that 

the closest species to E. aerogenes was K. pneumoniae (37). Considering the taxonomic 

https://www.sciencedirect.com/topics/immunology-and-microbiology/mobile-genetic-elements
https://www.sciencedirect.com/topics/immunology-and-microbiology/virulence
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requirements, the epithet mobilis was illegitimate and K. aerogenes was not validated. Thus 

today E. aerogenes is still part of the genus Enterobacter and all scientific data use only 

exceptionally Klebsiella aerogenes but again E. aerogenes (38). Multilocus Sequence 

Analysis (MLSA) of housekeeping genes, in part, and sequencing of the 16S rRNA have 

recently allowed the characterization of new Enterobacter species isolated from human 

infections or from plants (39, 40). The total genome sequence of the various Enterobacter has 

allowed reevaluation of the genus phylogeny and better evaluation of the importance of those 

incidences where some species were misidentified as other species by routine identification 

techniques, as was the case of E. hormaechei in E. cloacae (41). 

TAXONOMY OF THE GENUS 

Enterobacter amnigenus 

The species E. amnigenus, described in 1981 by Izard et al., is a rarely isolated bacterium 

(42). It was suggested by Brady et al. to reclassify it in the genus Lelliotia based on 

multilocus sequence analysis, however it has never been validly published and E. amnigenus 

still remains the official nomenclature(35).It comprises two genotypically and phenotypically 

different groups that have been called biogroup 1 and biogroup 2 by the CDC. The strains are 

generally ODC-positive, LDC- and urease-negative and ferment melibiose. Strains of E. 

amnigenus biogroup 1 ferment sucrose and raffinose but not D-sorbitol. They are ADH-

negative. Strains of the E. amnigenus biogroup 2 ferment D-sorbitol but not sucrose and 

raffinose. Additional identifying characters are presented in Table 1. Strains of E. amnigenus 

are generally susceptible to piperacillin, imipenem, gentamicin, tobramycin, amikacin, 

nalidixic acid, norfloxacin, ciprofloxacin and colistin and are resistant to ampicillin, 

amoxicillin-clavulanic acid, ticarcillin, and cephalothin. Resistance is variable across strains 

for second- and third-generation cephalosporins, latamoxef, doxycycline, chloramphenicol 

and cotrimoxazole (43-45).  
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Enterobacter cancerogenus 

Formerly known as Erwinia cancerogena, this species was transferred in 1988 to the 

genus Enterobacter after DNA-DNA hybridizations were studied for the three strains (46). 

Then, in 1989, Grimont and Ageron observed the synonymy between E. cancerogenus and 

Enterobacter taylorae (46). Currently, both denominations are still valid. Nevertheless, the 

name E. cancerogenus should be retained because it was established earlier. These strains are 

ODC- and ADH-positive and LDC- and urease-negative. They do not ferment D-sorbitol, 

sucrose, melibiose, dulcitol and raffinose, and they are not gelatinolytic. Additional 

identification characters are presented in Table 1. Strains studied for E. cancerogenus are 

generally susceptible to third-generation cephalosporins, latamoxef, imipenem, gentamicin, 

kanamycin, norfloxacin, ciprofloxacin and colistin, and often, they are susceptible to 

carbenicillin, ticarcillin, azlocillin, mezlocillin and piperacillin. They are naturally resistant to 

aminopenicillins, some cephalosporins and cotrimoxazole (47). They have an inducible 

chromosomal AmpC -lactamase (45, 48-50).  

Enterobacter cloacae complex  

This complex includes the following species: Enterobacter asburiae, E. carcinogenus, 

Enterobacter cloacae, Enterobacter hormaechei, Enterobacter kobei, Enterobacter 

nimipressuralis and E. mori. All these species are genotypically very close, with more than 

60% DNA-DNA homology. A phylogenetic study by Hofmann et al., based on sequences of 

four housekeeping genes, confirmed the genetic diversity of the Enterobacter cloacae 

complex, of which all affiliated species, although genetically related, form distinct clusters 

(3). E. cloacae and E. hormaechei are the most frequently isolated in human clinical 

specimens. 
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E. asburiae  

This species was described in 1986 by Brenner et al. (5) from strains of the enteric group 17, 

of which atypical bacterial strains of the genus Citrobacter or of the genus Enterobacter had 

been collected since 1978. It is sometimes described as Enterobacter muelleri. These strains 

are sometimes immobile, often having a Voges-Proskauer (VP)-negative reaction. They are 

indole-negative, they ferment D-sorbitol and sucrose, and they generally do not ferment the 

melibiose. When they are VP-positive, it is necessary to differentiate them from E. cloacae 

(E. asburiae does not have ADH and does not ferment L-rhamnose) and other VP-positive 

species (E. asburiae does not possess LDC, Tween 80 esterase, or deoxyribonuclease, 

characters possessed by Serratia marcescens and Serratia liquefaciens). Additional 

identifying characters are shown in Table 1. E. asburiae has occasionally been described as a 

bacterium with a clinical significance, mainly in blood cultures. However, de Florio et al. 

observed its gradual increase in 2017 (51). The complete genome of a clinical E. asburiae 

isolate from a bone marrow transplant patient has been sequenced (52). The strains studied by 

Brenner et al. (5) were still susceptible to gentamicin and sulfadiazine and generally to 

carbenicillin, kanamycin, streptomycin, chloramphenicol, nalidixic acid, and colistin. They 

were all resistant to ampicillin, cefalotine and tetracycline. Environmental strains isolated 

from watercourses in the United States have been shown as resistant to imipenem by 

producing a plasmid-derived IMI-2 carbapenemase, thus confirming the hypothesis of an 

environmental reservoir of this type of resistance gene (53, 54).  

      E. cloacae 

This is the type species of the genus Enterobacter. It is now divided into two subspecies: E. 

cloacae subspecies cloacae, for which the esculin test is negative, and E. cloacae subspecies 

dissolvens, with a positive esculin reaction (55). The strains are ODC- and ADH-positive and 

LDC-negative (among the bacteria of the genus Enterobacter, only the species E. cloacae, E. 
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taylorae, E. kobei and possibly E. amnigenus have this profile of decarboxylases). They 

ferment D-sorbitol, sucrose and melibiose. Additional characters are presented in Table 1. 

Some pathogenicity factors have been identified as a hemolytic and leukotoxic membrane-cell 

cytotoxin (56). With regard to epidemiological dissemination, several studies have confirmed 

that E. cloacae colonizations/infections correspond to dissemination of several clusters 

corresponding to known major multilocus sequences types and that no relationship exists with 

its geographical source. The various clones have a widespread dissemination and are 

continuously arising and expanding. Clinical isolates come from various sources and 

reservoirs, representing sampling from the diversity of the species in the population, and 

patients are potentially colonized in different ways before entering the hospital (57). E. 

cloacae is naturally resistant to ampicillin, amoxicillin-clavulanic acid, cephalothin and 

cefoxitin by the low-level production of the Bush Group 1 inducible natural cephalosporinase 

(class C). Ureidopenicillins and carboxypenicillins are active on at least half of the strains 

(12). In AmpC chromosomal cephalosporinase, derepression and constitutive production by 

mutation can lead to resistance to a large number of -lactams, particularly third-generation 

cephalosporins, except for cefepime (12, 58, 59). This AmpC-type resistance accounts for 

50% of β-lactam resistance in clinical strains and coexists frequently with that due to 

Extended-Spectrum -Lactamase (ESBL) expression. 

In 1989, the first cases of nosocomial infections due to strains possessing a broad spectrum -

lactamase (ESBL) were identified (18). Since then, various ESBLs, such as TEM, SHV and 

CTX-M, have been characterized in E. cloacae, including inhibitor-resistant TEMs (IRP) (60-

63).  E. cloacae, along with E. coli and K. pneumoniae, is one of the most common 

Enterobacteriaceae resistant to third-generation cephalosporins. Nevertheless, in recent years, 

clinical isolates, resistant through the production of carbapenemases, have been identified 

(64-67). In particular, in Asia, strains harboring IMP, NDM, GIM, or KPC enzymes have 

been described (68-70). Lee et al. found an imipenem resistance rate of 0.4% in E. cloacae 
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(71). For aminoglycosides, the percentages of resistant strains range from 0 to 51% for 

gentamicin, and from 0 to 34% for amikacin, whereas ciprofloxacin is active in 64 to 100% of 

cases (12). A recent study shows that 77% of clinical strains in China are plasmid-positive 

with determinants of aminoglycoside resistance (70). Regarding quinolones, Enterobacter 

cloacae is one of the Enterobacteria with Escherichia coli and Klebsiella pneumoniae in 

which the resistance of plasmid origin due to the QnrA protein was initially observed (70, 72-

74). These determinants of plasmid resistance to fluoroquinolones are found in more than 

60% of the strains (70). 

Enterobacter hormaechei  

This species has been described by O'Hara et al. in 1989 to designate previously assembled 

strains in the enteric group 75 (75). These are LDC- and gelatinase-negative strains, generally 

ODC-, ADH- and urease-positive, and they ferment sucrose and L-rhamnose but not D-

sorbitol or melibiose. These characters generally make it possible to differentiate this entity 

from phenotypically close species. Additional identifying characters are shown in Table 1. 

Hoffmann et al. have subdivided E. hormaechei into three subspecies based on the differential 

biochemical characters D-adonitol, D-arabitol, D-sorbitol, D-melibiose and dulcitol: E. 

hormaechei subspecies oharae, which ferments only melibiose; E. hormaechei subspecies 

hormaechei, which ferments only dulcitol; and E. hormaechei subspecies steigerwaltii, which 

ferments all the mentioned compounds except for dulcitol (76). Now, two supplemental 

subspecies have been characterized by whole genome comparisons and average nucleotide 

identity complete genome sequencing: E. hormaechei subspecies xiangfangensis and 

hormaechei subspecies hoffmannii (41). 

Most strains, described by O'Hara et al., have been isolated from samples of human origin. 

These isolates were sensitive or moderately sensitive to azlocillin, mezlocillin, piperacillin, 

cefotaxime, ceftriaxone, ceftazidime, latamoxef, imipenem, gentamicin, tobramycin, 

amikacin, chloramphenicol, cotrimoxazole, and trimethoprim (75). Rare strains harbored 
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ESBL and hyperproduced AmpC cephalosporinase, thereby conferring resistance to third-

generation cephalosporins (77). Strains producting carbapenemases have been recently 

identified (78). Davin-Regli et al. reported a nosocomial outbreak involving 21 isolates of E. 

hormaechei subspecies oharae, which were resistant to fluoroquinolones, and their isolation 

had always been preceded by treatment in patients with a fluoroquinolone (17).  

Enterobacter kobei  

The name Enterobacter kobei was proposed by Kosako et al., to group strains belonging to 

the NIH 21 group, previously attached to E. cloacae (79). These strains differ from E. cloacae 

by a negative VP-reaction. However, recently, a new VP-positive biotype causing urinary 

tract infection has been characterized (77). The clinical significance of these strains is often 

uncertain. However, the species is now also concerned by ESBL production (80). 

Enterobacter ludwigii 

This new species has been described on the basis of genotypic and phenotypic characters of 

16 strains with a clinical origin (81). It is genetically close to E. hormaechei, and a Biotype 

100 Gallery API system was used to distinguish it from other Enterobacter by its ability to 

use myo-inositol and methyl-D-glucopyranose. The whole-genome sequencing of the type 

strain was conducted (82). The strains are ADH-, ODC- positive and LDC- and urease 

negative. All strains are naturally resistant to ampicillin, amoxicillin-clavulanic acid and 

cefoxitin. Some strains of clinical origin hyperproduced AmpC cephalosporinase but were 

sensitive to cotrimoxazole, gentamicin, imipenem and ciprofloxacin. Moreover, recently a 

nosocomial bloodstream infection outbreak in neonates, caused by Enterobacter ludwigii 

coharboring CTX-M-8, SHV-12 and TEM-15, and a clinical isolate responsible of a 

postoperative bone infection, coharboring NDM-1 and OXA-48 carbapenemases in India  

were described (83, 84). 
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Enterobacter mori  

This species was first described as a phytopathogenic bacterium (87). It was isolated 

from diseased mulberry roots. The species could be differentiated from closely related species 

by the presence of lysine decarboxylase activity and the ability to use D-arabitol. The type 

strain R18-2T (= CGMCC 1.10322T = LMG 25706T) was sequenced. The 16S rRNA gene 

sequence and MLSA analysis indicated that E. mori is closed related to E. asburiae (muelleri) 

(4). Sixty-six genes potentially involved in the secretion system have been identified, 

explaining the phytopathogenic nature of this species (88). However, recently it has been 

identified as responsible for human infection in Austria, and the isolates carried an IMI-2 

carbapenemase (88). 

Enterobacter nimipressuralis  

This species was first considered as an Erwinia before being reclassified as Enterobacter in 

1986 by Brenner et al. (5, 85) on the basis of DNA-DNA hybridizations. Strains of E. 

nimipressuralis are not pigmented and are generally ADH-positive and urease-negative. They 

ferment D-sorbitol and melibiose but not sucrose. These characters most often make it 

possible to differentiate them from species that are phenotypically similar to the genus 

Enterobacter. Additional identifying characters are shown in Table 1. No isolation of human 

origin has been described except from a pseudobacteremia (86). However, Brenner et al. 

believed that this species could be involved in clinical practice because of the phenotypic 

proximity of these two species to E. cloacae (5); strains of clinical origin could be reported 

under this latter name. Hoffmann cluster X is E. nimipressuralis and it has been suggested to 

be reclassified as Lelliottia nimipressuralis by MLSA (3). 
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Enterobacter aerogenes  

This species occurs phenotypically and genotypically as a mobile Klebsiella 

pneumoniae by its peritrichous, ODC-positive, urease-negative and indole-negative flagella 

(Table 1). Izard et al. proposed to reclassify E. aerogenes as Klebsiella under the name 

Klebsiella mobilis (89). Taxonomically justified (by DNA-DNA hybridization), this proposal 

has not been accepted by medical microbiologists, who maintain the name as E. aerogenes. 

From the genome sequencing performed on a resistant clinical isolate, Diene et al., (37) have 

recently proposed the shift of the E. aerogenes species in the genus Klebsiella as K. 

aeromobilis. The successive acquisition of additional genes from genetic mobile elements and 

other species, which are efficiently integrated and translated, contribute to its notable 

phenotype (37). Interestingly, several genes involved in the bacterial mobility could have 

been borrowed from Serratia genus and the conjugatif plasmid being also constructed from 

various transposons or genetic mobile elements (37). 

E. aerogenes has been regularly involved in nosocomial infections since 1992, 

particularly in Western Europe (9, 13, 16, 90-93). In 2012, in France, E. aerogenes 

represented the fifth Enterobacterium responsible for nosocomial infections and the seventh 

gram-negative bacillus. Its prevalence has fallen sharply since 2000 (21). Although 

Enterobacter cloacae is now the Enterobacter sp. most frequently isolated in clinical settings 

and the species expressing the widest panel of new -lactamases or carbapenemases, E. 

aerogenes more easily leads to septic shock in infected patients, is associated with higher 

mortality (39% of patients), and shows greater virulence (94, 95). 

Strains of E. aerogenes have a broad ability to acquire antibiotic resistance 

mechanisms (96). They possess a low-level natural AmpC chromosomal cephalosporinase 

(Bush Group 1) that induces resistance to first-generation cephalosporins. The 

hyperproduction of chromosomic AmpC in clinical strains leads, after induction by the third-

generation cephalosporins or after mutation, to resistance to all -lactams except cefepime, 
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cefpirome and carbapenems (97). The plasmidic AmpC cephalosporinase gene (blaCMY-10) 

gives the same phenotypes (98). In 1993, the first cases of nosocomial infections caused by 

ESBL-producing strains were observed. In 1998, Pitout et al. isolated ESBL-producing strains 

resistant to gentamicin and cotrimoxazole (99). Various ESBLs were identified as the TEM, 

SHV and CTX -lactamases family, but the TEM-24 remains associated with the preferential 

conjugative plasmid of this species (60, 100-105). In these producer strains, the sensitivity to 

carbapenems is generally preserved. In parallel, a number of imipenem-resistant clinical 

strains have been described (61, 94, 96, 100). In these isolates, the lack of antibiotic 

penetration is mainly associated with a modification of the porin expression: an alteration of 

the balance Omp35/Omp36 is detected and then followed by a total defect of the porins in the 

strains collected during the treatment (61, 94, 106-109). Interestingly, an original mechanism 

of impermeability has been reported with the presence of a mutation in the Omp36 that 

strongly alters the channel properties (107, 108). Finally, since 2008, carbapenemases of the 

IPM, NDM or KPC type have been described as responsible for carbapenem resistance (96). 

Moreover, approximately 40% of multidrug resistant (MDR) clinical strains have active 

efflux (109). Resistance to quinolones is due to modification of the target or due to plasmidic 

resistance (qnrS or qepA encoding an efflux pump) transmitted by other species. Finally, total 

resistance is not an exceptional phenotype in E. aerogenes, since a strain resistant to all 

antibiotics, including colistin by mutation of pmrA, has been isolated and studied (37, 110). 

Enterobacter gergoviae  

This species was described for the first time by Richard et al. in 1976 using a multidrug-

resistant hospital strain isolated in Clermont-Ferrand (“Gergòvia” near Clermont-Ferrand, 

France) (111). Its classification was confirmed in 1980 by Brenner et al. after a DNA-DNA 

hybridization study (5, 112). Recently, a suggestion was made to include this species in the 

genus Pluribacter as P. gergoviae, based on the sequence analysis of four genes according to 



16 
 

MLSA (35). The strains are generally LDC- and ODC-positive and gelatinase-negative. They 

are urease-positive and do not ferment inositol, D-sorbitol and mucate, which differentiate 

them from E. aerogenes. Unlike other Enterobacter bacteria, E. gergoviae does not grow in 

potassium cyanide broth. Additional characters are presented in Table 1. Enterobacter 

gergoviae is rarely clinically isolated and has been exceptionally resistant to antibiotics (5, 35, 

45, 113). Recently, however, y ESBL type SHV and carbapenemase type (IMP or KPC) 

producers were described in this species (114). With regard to biocides, due to membrane 

modifications, esterase production and the modulation of enzymes involved in oxidative 

detoxification, this species has a natural resistance to the parabens, triclosan, and MIT-CMIT, 

which are preservatives used in this type of product (115, 116). Such results explain the 

ability of this species to contaminate cosmetics from a source probably of unknown plant 

origin (117, 118).  

Recent species descriptions 

Enterobacter bugandensis, E. timonensis, E. massiliensis, E. chengduensis and E. 

sichuanensi and E. roggenkampii were recently described based on a computational analysis 

of sequenced Enterobacter genomes or MLSA of housekeeping genes (20,40,  41, 119, 120). 

E. bugandensis was responsible for a three-month outbreak of septicemia in a neonatal ward 

in Tanzania and was also identified from the environment of the International Space station 

and studied for its MDR phenotype (4, 119). On the basis of whole-genome sequencing, this 

species was found phylogenetically close to E. hormaechei. It is capsule-forming and motile, 

and its biochemical properties are presented in Table 1. All strains harbored a blaCTX-M-15 

gene and were resistant to quinolones, tetracycline and sulfamides.  

E. timonensis and E. massiliensis (characterized in Timone hospital laboratory, Marseille, 

France) were described on the basis of mass spectrometry and 16S rRNA DNA-DNA 

hybridization among strains isolated from the gut microflora of patients from Africa (40). 
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These isolates were not associated with human infections. Enterobacter chengduensis and E. 

sichuanensis, respectively, were isolated in China from a human blood sample and from urine 

and considered a new species due to particular phenotypic characteristics and by phylogenetic 

analysis using MLSA (4, 120). E. roggenkampii (rog.gen.kampʹi.i. N.L. gen. m. Roggenkamp, 

was named in honor of Andreas Roggenkamp, a German bacteriologist who helped 

understanding of the phylogenetic structure of the E. cloacae complex. This creates a novel 

clade of the E. cloacae complex, on the basis of clusters determination within the E. cloacae 

complex using hsp60 as marker genes (41). Enterobacter roggenkampii sp. nov. is the type 

strain for Hoffmann cluster IV. 

EPIDEMIOLOGY AND GLOBAL SPREAD 

 Environmental sources 

Members of the genus Enterobacter are environmental organisms and opportunistic 

pathogens of plants and humans. They are commonly found in water, sewage, soil, plants or 

animal feces (121). E. amnigenus biogroups 1 and 2 have been isolated from drinking water, 

surface water and from wild soils. E. asburiae has been isolated from water, soils, plants, 

food, hospital environments and healthcare staff equipment, such as probes, catheters, etc. 

(122). E. cloacae has been isolated from food, especially from samples of formula containing 

plants, raw vegetables and roots, as well as from drinking water (45, 123). Dugleux et al., 

described an outbreak of E. cloacae septicemia in a hospital due to the contamination of 

parenteral nutrition preparations stored in a refrigerator (124). Similarly, outbreaks have been 

described due to human albumin flasks (125), humidifiers and respiratory therapy equipment 

(126) and hydrotherapy water in a burn unit (127).  

E. gergoviae has been isolated from the environment, from fruits and vegetables, from 

various sterility controls and in batches of various types of cosmetic products (48, 111, 117, 
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118). The reservoir of E. gergoviae is unknown but could be associated with a plant biotope. 

Numerous Enterobacter species are endophytic bacteria and are present in plant rhizospheres. 

 Human reservoirs and hospital-acquired infections 

E. amnigenus has been isolated from respiratory tract samples, wounds, and stool, as 

well as from a catheter and a series of blood cultures in a patient undergoing cardiac 

transplantation (43). E. cancerogenus has been found in specimens of cerebrospinal fluid, 

blood, osteomyelitis, bile, tracheal secretions, and urine, for which its clinical significance has 

been proven. It has also been isolated from skin specimens, without evidence that E. 

cancerogenus was responsible for the infection (49, 50, 129-131). In 1997, Abbott and Janda, 

reported 5 cases of E. cancerogenus infections as bacteremia in patients with significant 

injuries or trauma (131). In one of them, E. cancerogenus was isolated for 2 months in the 

liquid drainage. 

E. asburiae has been isolated from urine, respiratory samples, blood, stool, wounds, skin, 

gallbladder (52). E. cloacae is present in the normal flora of the human gastrointestinal tract. 

This species is very often isolated in samples of clinical origin: urines, sputum, and blood 

culture (132, 133). Currently, the bacterium is found frequently during systematic sampling of 

neonates who have been colonized early (134). It is involved in 10% of postsurgical 

peritonitis, 5% of nosocomial sepsis and pneumonias and 4% of urinary tract infections (3). 

Fata et al. reported a fatal case of myositis in a neutropenic patient (135). E. cloacae has been 

implicated in cases of endophthalmitis (136), brain abces (137), meningitides (138), 

spondilodiscitis (139) and endocarditis (140). 

E. hormaechei has been isolated from wounds, sputum and from blood cultures. In 1997, 

Wenger et al. (19) reported an outbreak in 1993 in an ICU involving 10 premature infants and 

including 5 cases of bacteremia. 
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Clinical strains of E. kobei have been isolated from various clinical samples: blood, sputum, 

urine and especially intra-abdominal samples. Recently, a nosocomial bloodstream infection 

outbreak occurred in a Neonatal ICU in a Venezuelan hospital and was caused by 

Enterobacter ludwigii coharboring three different ESBL (84). E. aerogenes is quite frequently 

isolated in human samples (respiratory, urinary, blood, abcess, gastrointestinal, or cutaneous 

tissues) or from materials such as ureteric stents. The species is isolated particularly from 

patient hospitalized in ICUs (15, 22, 23, 110, 141). The spread from patient to patient due to 

inadequate attention to infection control measures, especially hand-washing, represents the 

main risk factor (16). Particular infections were described as endocarditis, endophthalmitis 

and postneurosurgical meningitis (142).  

Finally, E. gergoviae was isolated from respiratory samples, wounds, blood cultures, stools 

and urine. Except for its involvement in a nosocomial epidemic of urinary tract infections in 

France in 1976 and an epidemic of bacteremia in newborns following the contamination of a 

parenteral glucose solution, sporadic cases are described (143), such as pulmonary 

pneumopathy (144).  

CLINICAL ASPECTS 

Pathogenicity  

Little is known about the pathogenicity and virulence factors of Enterobacter spp due 

to the paucity of studies in this area. Like other enterobacteria, they possess a flagellum. In 

addition to facilitating motility, flagella possess several other functions: biofilm formation, 

protein export, and adhesion (145). The adhesion plays an essential role in the tissue invasion 

and the beginning of the infection. Hassan et al.
 
studied thirty-two isolates of Enterobacter sp. 

obtained from urinary tract infections and identified the well-known fimH gene (which 

encodes for the Type 1 fimbriae) in 40% of the isolates. Enterobacter spp. also possesses 

https://www.sciencedirect.com/topics/immunology-and-microbiology/enterobacter
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different endotoxins (12). Barnes et al. observed that Enterobacter spp. strains secreted in 

vitro enterotoxins, alpha-hemolysins and cytotoxins similar to Shiga-like toxins II "thiol-

activated pore-forming cytotoxins" (146, 147). In Gram-negative bacteria, the type III 

secretion system (TTSS) is recognized as a pathogenicity factor. One study showed that 27% 

of E. cloacae isolated from clinical infections possessed this factor (10). The E. cloacae 

complex strains may also induce apoptosis of Hep2 cells (148). The acquisition of the plasmid 

pQC described by Paauw et al., containing virulence-encoding (ter and sea genes) and 

resistance-encoding (blaCTX-M-9, qnrA1, aadB, aadA2, sukk and sat) genes contributes to 

the virulence and adaptation of the E. cloacae clade 1 (10). Additionally, E. hormaechei has 

been reported to be more virulent than other species due to the presence of a HPI that is 

frequently detected on their chromosome. 

The ability of bacteria to assimilate iron through chelators is important for bacterial 

metabolism and for the establishment of infection. The siderophores encoding genes are 

generally observed in HPI, especially in Yersinia spp. Among these genes, the irp2 gene has 

been identified in Enterobacter spp. (149). Finally, E. cloacae complex strains can harbor 

curli-encoding genes involving host cell adhesion and invasion. A recent study showed that 

78% of the clinical strains studied (n=11) had the csgBA operon (which encodes for curli). 

The authors observed a significant correlation between biofilm formation by these strains and 

csgA gene expression (gene coding for the main subunit of curli, curlin) and csgD (coding for 

an activator of the operon) (150). 

Among the genus Enterobacter, some differences in pathogenicity could be noted between E. 

aerogenes and E. cloacae (151). Azevedo et al. reported the presence of virulence-encoding 

genes in E. aerogenes that have been identified in Klebsiella pneumoniae (151). For instance, 

fimH and mrkD genes encoding adhesins of type 1 and type 3 fimbriae and ycfM are detected 

and they play a key role in the bacterial adhesion and in the biofilm formation, which are 

https://www.sciencedirect.com/topics/immunology-and-microbiology/bacterial-metabolism
https://www.sciencedirect.com/topics/immunology-and-microbiology/bacterial-metabolism
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important aspect of bacterial virulence (152). About the iron transport, kfu, entB and ybtS 

genes that are involved in the production of siderophores are identified in E. aerogenes (153). 

In this regard, it is important to note that Kfu is often detected in hypervirulent K. pneumoniae 

strains and allS gene, which is involved in the allantoin metabolism, is closely associated with 

K. pneumoniae isolates detected in liver abscesses. Finally, the virulence of TEM-24-

producing E. aerogenes was evaluated in the Caenorhabditis elegans model (94). A 

significant reduction of E. aerogenes virulence was observed in resistant strains that have 

modifications of membrane permeability involved in drug resistance. This difference is 

noticeable even if this species exhibits a moderate virulence in this model although the 

studied strains harbored the HPI virulence factor-encoding genes. The alteration of outer 

membrane permeability, e.g. lack of porins that are a prominent entry pathway for nutrients, 

has an important impact on bacterial fitness. The antibiotic pressure promotes the emergence 

of resistant strains having porin deficiency and LPS modifications that generate a 

nonphysiological membrane state (29). This causes an unfavorable fitness cost that 

consequently alters the infection/colonization capability (94). 

Characteristics of concerned patients 

Enterobacter spp. is involved in nosocomial infections and especially in ICUs where it affects 

immunocompromised patients, such as neonates, premature infants, diabetes mellitus, burned 

or multiply traumatized patients, and patients with leukemia or who are undergoing 

immunosuppressive therapy. Invasive procedures, such as catheterization and intubation, 

which are frequently found in an ICU, represent a main source of infection (100, 154-157). 

The patients also harbored numerous comorbidities with a high Charlson score. Among them, 

diabetes mellitus and its main complications (chronic vascular and renal diseases) represent a 

risk factor for Enterobacter spp. infection (154). Finally, Enterobacter spp. preferentially 

affect patients with a long median duration of hospitalization. This time increases the 
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digestive carriage, which represents a high risk factor for transmission (158, 159). A 

persistence of digestive carriage over at least a 5-year period was demonstrated (160). 

Frequently, the acquisition of Enterobater spp. concerned MDR strains. 

Nosocomial acquisition and the median number of antibiotics used represent risk factors for 

these bacteria (161). An ICU stay >14 days, presence of a tracheostomy, prior central venous 

catheter use, prior receipt of mechanical ventilation and previous exposure to broad-spectrum 

antibiotics or any antibiotic during the 30 days before the infection were also associated with 

acquisition of this MDR (162, 163). Due to the immune context of the patients and the high 

rate of multidrug resistance, the presence of Enterobacter spp. in the bloodstream represents a 

high risk of mortality (154, 156, 164). 

Clinical manifestations 

In Enterobacter spp., E. aerogenes and E. cloacae complex have been described in various 

nosocomial outbreaks that correspond to more than 5% of the bacteremia acquired in the 

hospital, 5% of pneumonia, 4% of UTI and 10% of postsurgical peritonitis cases (12). 

Enterobacter spp. is involved in numerous infections, including cerebral abscess, pneumonia, 

meningitis, septicemia and wound, urinary tract (particularly catheter-related UTI) and 

abdominal cavity/intestinal infections (24, 165). This species is especially described in ICUs, 

as previously mentioned, and has also been involved in sepsis occuring in neonatology (166, 

167). Moreover, E. hormaechei has also been identified in intravascular device-related 

infections, in surgical site infections (such as primarily postoperative in orthopedic trauma or 

related to devices) or notably after organ transplants (162, 168-173).  

Within the E. cloacae complex, the most isolated species are E. hormaechei (clusters VIII and 

VI) with 40% to 48% of strains isolated, followed by E. cloacae cluster III, with 25% to 42% 

of strains being isolated (11, 34, 174). In 2012, Kremer and Hoffmann were interested in the 

types of infections caused by the different species of the group (174). They studied 196 
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strains, which had been isolated from various samples: blood cultures; catheters; pleural 

fluids; and respiratory, urogenital, digestive and cutaneous samples. In blood cultures, E. 

hormaechei subsp oharae (cluster VI) was significantly more prevalent, whereas E. asburiae 

was not represented at all. On the other hand, E. asburiae was more frequently isolated in 

respiratory samples than from other sites. E. hormaechei subsp. steigerwaltii (cluster VIII) 

was overrepresented in skin injury swabs, particularly in burns. No clonality relationship was 

identified between the strains. Paauw et al. studied 156 strains and similarly showed that 

clade 1 was significantly more involved than clade 2 in infections, suggesting this clade had 

greater pathogenicity (34). This clade is more common in the nosocomial environment, and 

its implication in infections could be the result of a better adaptation in this environment than 

a higher pathogenicity. This hypothesis is supported by the detection of the pQC plasmid in 

clade 1 but not in clade 2 species (10). Reports of several outbreaks of sepsis in neonatal ICUs 

in Brazil and the United States have been reported, with E. hormaechei being implicated 

(167). In 2016, Akbari et al. studied 50 Enterobacter strains isolated from UTIs (7). Twenty-

five were part of cluster VI, 9 of cluster III and 6 of cluster VIII. Clusters IV, X, XII and XIII 

were absent (7). In 2009, the first study on the involvement of E. cloacae specifically in 

infected orthopedic implants was published (11). Fifteen strains (71%) belonged to E. 

hormaechei (5 of cluster VI, 10 of cluster VIII), 2 (9%) to E. cloacae cluster III, and 2 (9%) to 

E. ludwigii (cluster V). E. cloacae subsp. cloacae and E. asburiae were only identified once, 

and other species were not observed. The authors found a significant difference between the 

prevalence of cluster III in this type of infection compared to that of cluster III in the other 

samples. Cluster III was less commonly present in infected orthopedic implants compared to 

their overall distribution. In addition, in the hip prosthesis samples, only E. hormaechei was 

isolated (9 out of 9). The authors hypothesized that different species would be implicated in 

different infections. Finally, E. cloacae was one of the most prevalent species isolated from 
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diabetic foot infections using a culturomics approach (175). This result confirms its role in 

wounds and bone infections.  

First-line antibiotics and treatment 

As infections due to Enterobacter are mainly nosocomial, most isolates present a broad 

resistance to third generation cephalosporins, penicillins and quinolones due to previous 

treatment of infected patients located in the same or next hospital ward. Some antibiotics 

remain effective for treatment: for instance, among the beta-lactams, the fourth-generation 

cephalosporins and carbapenems are the most attractive options, even if limiting carbapenem 

use should be encouraged, and the aminoglycosides have a good activity.  

The use of third-generation cephalosporins and the monobactams (e.g., aztreonam) represents 

an important risk of in vivo derepression of AmpC -lactamases, that can be due to a mutation 

in the repressor, during the treatment inducing high-level resistance to many -lactam 

antibiotics. The interest in the concomitant use of aminoglycoside to prevent this type of 

resistance is mixed (9, 176). The use of fourth-generation cephalosporins (e.g., cefepime and 

cefpirome) seems to be more effective, mostly due to their activity against AmpC 

hyperproducing Enterobacter strains (177). These molecules present i) an efficient diffusion 

across the outer membrane porins, 2) a significant stability face to chromosomal -

lactamases, and 3) an enhanced affinity for key penicillin-binding proteins located in the 

Enterobacter periplasm compared to older cephalosporins (178, 179). Many publications have 

demonstrated their interest (180, 181). 

Carbapenems are very efficient against a wide variety of enterobacteria (182). AmpC 

overproducing Enterobacter spp. typically remains susceptible to carbapenems. However, the 

use of carbapenems could induce a loss of porin production and an impermeability of the 

bacteria (see the corresponding chapter) (154). This resistance remains rare to date.  

javascript:OpenWindow('../drugpopup/aztreonam.htm','aztreonam','width=780,height=400,scrollbars=1,toolbar=yes')
javascript:OpenWindow('../drugpopup/Cefepime.htm','cefepime','width=780,height=400,scrollbars=1,toolbar=yes')
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Recently, the use of piperacillin-tazobactam combination has been observed as a valuable 

treatment option for bloodstream infections due to Enterobacter spp. (180). Different new 

antibiotics have been tested against Enterobacter spp. The novel siderophore cephalosporin 

cefiderocol presents excellent results against these bacteria (183). Different combinations 

between cephalosporins and -lactamase inhibitors (cefepime/zidebactam, 

cefepime/tazobactam, ceftolozane/tazobactam, ceftazidime/avibactam, etc.) also present high 

antibacterial efficacy against these pathogens (184-186). However, their use is not encouraged 

as a first approach in the aim to limit the emergence of bacteria resistant to these new 

antibiotics solutions. 

Finally, aminoglycosides and particularly amikacin remain active in more than 95% of 

Enterobacter spp. These rates were stable over time period. In Enterobacter, the 

aminoglycoside resistance is usually due to the presence of a plasmid coding for 

aminoglycoside-modifying enzymes (187). 

ANTIMICROBIAL RESISTANCE  

Development of antimicrobial resistance  

Among Enterobacter sp., E. cloacae and E. aerogenes are mainly affected by development 

of antimicrobial resistance (14, 188). Regarding E. aerogenes, ß-lactam uptake is closely 

associated with the presence of general porins, such as Omp35 and Omp36, which are 

homologous to the OmpC and OmpF porins that are the archetypes of the general nonspecific 

enterobacterial porins (189-192).  

Several publications have described a modification of the porin pattern present in 

antibiotic-resistant isolates: resistant E. aerogenes can exhibit a shift in the type of porin 

expressed (Omp35 to Omp36), a reduction in the production level, or the synthesis of a porin 

exhibiting mutations in the porin structure that alters channel functions (for reviews see: 29, 
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190). These interplays of membrane impermeability and enzymatic barriers were been first 

mentioned in H. Nikaido 's model (193, 194). 

Consequently, the clinical isolates collected in the patient body during the antibiotherapy 

present a serious loss in susceptibility for cephalosporins and carbapenems (195, 196). This 

alteration of porin profiles is also often reported with a concomitant synthesis of degradative 

enzymes such as -lactamases, cephalosporinases, or carbapenemases, which generate a 

worrying level of ß-lactam resistance (195, 197-199). 

Moreover, the dissemination of resistance genes via genetic mobile elements is an important 

aspect of the antibiotic resistance in Gram-negative bacteria in the ESKAPE group (14, 200). 

Molecular mechanisms of resistance  

  Enzymatic barrier and epidemiology (Table 2)  

  In most of Enterobacter spp., the production of β-lactamases is the 

prominent mechanism responsible for β-lactam resistance and E. aerogenes and E. cloacae 

have a broad ability to modulate these mechanisms of resistance. Importantly, these 

bacteria are able to produce a low level of a chromosomal AmpC -lactamase-type 

cephalosporinase that generates a resistance to first-generation cephalosporins (24, 198). 

The chromosomally acquired resistance promotes the overproduction of this AmpC 

cephalosporinase, for instance, during incubation with a subinhibitory concentration of 

carbapenem (201). Following the inactivation of AmpR or the acquisition of a plasmidic 

ampC, an overproduction of AmpC ß-lactamase contributes to the resistance toward the 

third-generation cephalosporins (24, 202-204). E. aerogenes is also able to integrate a large 

plasmid (130 kb) that contains the ampC gene of chromosomal origin (blaCMY -10). In 

the absence of antibiotic pressure, this genetic transmission can contribute to a systematic 
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spreading of resistance mechanism (205). This AmpC-related resistance described in 50% 

of clinical isolates is frequently associated with the expression of ESBL (24).  

The first hospital-acquired infections caused by these strains that exhibit resistance to 

common -lactams due to the expression of ESBL were reported in 1993 (99). TEM-24 

enzyme was associated with E. aerogenes clonal dissemination in hospitals in France (8, 23, 

103, 104). Other TEM types or CTX-M types (e.g., CTX-M-2) are also often reported, but 

TEM-24 remains associated with preferential conjugative Enterobacter plasmid (10, 24, 73, 

100, 101). These enzymes contribute to a global resistance towards all ß-lactams except 

carbapenems (62). In Enterobacteriaceae, E. cloacae is now identified as the third most 

common bacteria resistant to third-generation cephalosporins with enteric E. coli and K. 

pneumoniae (206). Different enzymes (ESBL) belonging to TEM, SHV and CTX -M classes 

have been characterized in E. cloacae and these include also resistant TEM inhibitors or 

inhibitor-resistant TEM (IRT) enzymes. Notably, some variants have been identified while 

exhibiting CTX-M production, and others, such as TEM or SHV, have been described from 

epidemic episodes (24). A transfer of a genomic resistance island is also possible in 

Enterobacter spp. For instance, it has been recently described a variant of AGI1 that belongs 

to the Salmonella genomic island/Proteus genomic island/Acinetobacter genomic island 

family, in E. cloacae (207). This isolate was resistant to all the antibiotics tested except 

imipenem and amikacin. 

Imipenem is the most effective antibiotic for the treatment of E. cloacae infections (24). 

Carbapenemases that belong to NDM and VIM types are identified in E. aerogenes and E. 

cloacae. KPC or class D β-lactamases possessing carbapenemase properties such as the OXA-

48 type, are identified in Europe/Asia/America (24, 208, 209). In 2010, the CDC reported the 

first carriage of NDM-1-producing E. cloacae in patients previously treated in India (210, 

211). Recently, metallo--lactamases that comprizes IMP-type enzymes and NDM-, GIM-, 

VIM- and serine-carbapenemase-type KPC and FRI, have been characterized (24, 212, 213). 
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OXA-48-type serine carbapenemase seems to be the most prevalent (208, 214). In E. cloacae, 

an increase in the rate of imipenem resistance has been observed. Moreover, an epidemic 

survey of E. cloacae blood infection reported the presence of metallo--lactamase (24). E. 

cloacae is the third Enterobacteriaceae for the production of carbapenemase and several 

strains have been described to simultaneously express two carbapenemases (215). A report 

mentions that KPC enzyme is the most frequently identified in the SMART global 

surveillance program from 2008 to 2014 (216). This KPC prevalence is also reported, 

indicating a limited emergence of NDM-1 (217). In contrast, a longitudinal study (2013-2017) 

performed in China indicates that an NDM producer is predominant in E. cloacae (218). 

Moreover, the carbapenem resistance in the E. cloacae complex had noticeably increased in a 

recent study of carbapenem susceptibility performed by the US Veterans Health 

Administration 2006-2015 (219). A recent publication based on genomic epidemiology of 

carbapenemase-producing Enterobacter spp. comprising predominantly E. xiangfangensis 

and E. hormaechei isolates, reports that the most common enzyme identified is VIM, 

followed by NDM, KPC, OXA-48 and IMP (220). Finally, an association of carbapenemase 

production with a loss of porin expression has been demonstrated in strains resistant to the 

combination of -lactamase inhibitors (relactam) plus carbapenems (221).  

Regarding the aminoglycoside resistance, aminoglycoside-modifying enzymes are 

distributed in acetyltransferases (AAC), phosphotransferases (APH), adenylyltransferases 

(AAD or ANT) and 16S rRNA methyltransferases, such as ArmA and RmtB (70). They are 

often plasmid-encoded or associated with transposable elements, which facilitate the 

acquisition of resistance phenotypes (165). 

The aminoglycoside-modifying genes, e.g., aac(3)-IIa, aac(6')-Ib, and ant(2″)-Ia, are 

involved in aminoglycoside resistance affecting at different levels tobramycin, gentamicin, 

and amikacin. The clinical strains frequently contain more than one enzyme (70, 187, 222). 

The enzymatic resistance to fluoroquinolones has been characterized as a two-point mutation 
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allele of aac(6′)-Ib [named aac(6′)-Ib-cr], the aminoglycosides resistance enzymatic 

determinant, which became able to acetylate ciprofloxacin and norfloxacin (70, 223). The 

association with the blaOXA-1 gene in various genetic mobile elements contributes to a rapid 

spreading of this new mechanism (24). 

  Membrane-associated mechanisms  

Numerous imipenem-resistant clinical strains have been described, and these present a severe 

alteration of porin expression associated or not with the overexpression of efflux pumps that 

occur during antibiotic therapy (24, 29). 

Membrane-associated mechanisms of resistance including porin defects and increased levels 

of efflux pumps are now recognized to strongly participate in the MDR phenotype by 

controlling the internal concentration of antibiotics (Masi et al., submitted). These 

"concentration barriers" can also induce the emergence/induction of other mechanisms, such 

as target mutations, e.g., mutated gyrase or the expression of detoxifying enzymes, including 

-lactamases (195). Interestingly, the alteration of LPS also has been described in many 

resistant isolates (224, 225). 

i) Omps, Porins and OM permeability 

OmpA was first reported and characterized in 1983, and the Tsx channel involved in 

nucleoside uptake was reported in 1997 in E. aerogenes (226, 227). Today, three general 

(nonspecific) porins have been identified in Enterobacter spp, Omp35, Omp36 and Omp37, 

and, two additional specific porins, LamB and PhoE, have been identified and exhibit some 

similarities with E. coli OMPs that are largely studied (for review see 189, 190, 191, 228). 

Importantly, due to their specific trimeric organization in the membrane, these OM proteins 

need important posttranslational steps that (i) perform the maturation of precursor forms, (ii) 

correctly address the protein into the OM, and (iii) manage the rate and dynamics of the final 

trimeric assembly of newly synthesized proteins (229-230). Like the archetypes OmpC and 
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OmpF, Omp35 and Omp36 are assembled in stable trimers, and each subunit contains a 

hydrophilic channel presenting a typical -barrel structure organizing an internal eyelet that 

constricts the lumen and creates a strong transverse electric field guiding the diffusion of 

charged molecules. Recently, the 3D structures of E. aerogenes and cloacae porins have been 

solved, and the trimeric structures have been published (231). Their structures exhibit a high 

sequence identity and their channel properties, e.g., conductance and selectivity, which are 

determined by their planar lipid bilayers, are very similar; for instance, the transversal electric 

field located in the lumen of the channel is well-conserved in the OmpF group, which is more 

permeable to anionic compounds (232). Regarding the OmpC group, which includes Omp36, 

OmpE36, and OmpK36 for E. aerogenes, E. cloacae and K. pneumoniae, a smaller lumen of 

the pore, a lower conductance (approximately 3 nS), and a higher cation-selectivity (with a 

PK
+
/PCl

-
 to approximately 2.1-2.2) are obtained compared to those obtained from the OmpF 

orthologs (232). Importantly, the channel is able to promote the antibiotic travel across the 

OM and ensure accumulation inside the periplasmic space, as demonstrated with purified 

Omp36 or by using intact cells and labeled antibiotics (233-234). Moreover, immunological 

and functional comparisons of E. aerogenes and E. coli porins have reported some conserved 

and variable features in the antigenic profile and in the reception/translocation functions for 

bacteriocins (235). This illustrates an adaptive evolution of specific exposed domains when 

the pore activity is preserved (232) (Table 3). 

Similarly, to the E. coli porin expression (28, 236, 237), the regulation of these OM general 

channels is sophisticated in Enterobacter spp., and several models have been proposed to 

integrate not only the Mar and Ram regulation cascades but also the two-component system 

(TCS) regulator pathways that are directly involved in the sensing, transmission and control 

of porin transcription-translation-assembly (24, 29, 195). These different means of regulation 

are involved in the Enterobacter response and adaptation to the presence of antibiotics: they 



31 
 

represent the first barrier and the main lever for controlling the penetration flux and 

accumulation level of antimicrobials (see section 3).  

ii) Porins and antibiotic activity 

Interestingly, a pioneer study has determined that the porin-deficient phenotype 

corresponds to approximately 6-7% of the -lactam resistant E. aerogenes isolates collected 

during a one-year period (105, 238). During the antibiotic treatment of patients, a sequential 

alteration in the balance between Omp35 and Omp36 has been reported: from the expression 

of Omp36 and 35 in the carbapenem-susceptible isolate, to the Omp36-producing strain 

lacking Omp35 and exhibiting intermediate susceptibility, and finally, to a carbapenem-

resistant isolate having no porins (94, 239). Furthermore, LamB porin can be expressed in 

place of Omp35 and Omp36, generating a low susceptibility to -lactam (240). In some 

isolates, OmpX, a small OM protein, is involved in the downregulation of porin expression 

that is associated with a decrease of antibiotic susceptibility (241-243). An E. cloacae PhoE 

porin has been purified and characterized; however, no information has been obtained 

regarding its role in clinical strains (244). Resistant isolates collected from patients who 

received antibiotherapy were extensively studied with regard to their level of porin expression 

and pore activity (107, 108, 201, 240, 244). The loss of porins has been reported in many 

studies carried out on E. cloacae and E. aerogenes clinical isolates, and due to space 

limitations, only a limited part of the published studies are indicated herein (10, 202, 221, 

245-250).  

Importantly, a key mutation has been identified in a resistant isolate: this mutation, causing 

a Gly to Asp change, located in the eyelet region of the Omp36 lumen induced a strong 

modification inside the channel conformation causing alteration of both conductance and 

selectivity. Consequently, the mutated porin promotes a noticeable resistance to -lactams but 

preserves a limited nutrient permeation through the porin (107, 108). This selected "porin 

strategy" maintains a minimal cost fitness for the bacterial cell associated with a solid 
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decrease of antibiotic diffusion contributing to the resistance (251). Interestingly, as 

previously mentioned, the porin loss has an impact on the pathogenicity of E. aerogenes 

isolates, which become less virulent in a Caenorhabditis elegans model (94). This adverse 

effect of resistance mechanisms on K. pneumoniae virulence has been extensively analyzed in 

the case of OmpK36 and OmpK35 in a recent review (252, 253). Moreover, similar 

observations have been reported for E. coli (254) and we may hypothesize that the porin 

expression is necessary for some important steps involved in the virulence or contribute to the 

envelope stability during colonization or virulence.  

In addition to general porins, TolC, the outer membrane channel involved in the efflux 

activity and secretion (RND), has been described and characterized in E. aerogenes and E. 

cloacae (253-255). In addition, E. aerogenes TolC and EefC have been documented and 

present different channel properties determined by using electrophysiology assays (256).  

iii) Efflux pumps and antibiotic activity 

Multidrug efflux pumps present on the Enterobacter genomes belong to the ABC, MF, 

SMR, MATE, PACE and RND superfamilies previously described (259, 260); for a 

classification of membrane transporters, see (261), and the Paulsen site 

(http://www.membranetransport.org/transportDB2/index.html) (Table 3). Inner membrane 

transporters correspond to a single-membrane protein located in the inner bacterial membrane, 

and they function as monomers or as dimers (259). These IM transporters pump out the drugs 

from the cytoplasm (or the inner leaflet of the IM) to the periplasmic space, such as reported 

for EmmdR or SugE in E. cloacae (262, 263). Interestingly, these IM transporters belonging 

to the SMR or MATE families can cooperate with the RND family in order to efficiently 

expel antibacterial compounds outside the bacterial cell (264). In the bacterial envelope, an 

RND complex, the tripartite efflux system that comprises an inner membrane transporter, a 

periplasmic adapter protein, and an outer membrane channel, recognizes and translocates the 

drugs across the OM to the external medium (259, 260, 265). These RND efflux pumps 
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contribute to the removal of a large number of chemically diverse compounds, such as 

antibiotics, detergents, biocides, preservatives, etc., that are present in the bacterial volume 

and can be deleterious for the bacteria (259, 266).  

With regard to the AcrAB-TolC pump, the complex has been identified and described in E. 

cloacae and E. aerogenes (255, 256, 267). The purification and the biochemical 

characterization have been performed for TolC and EefC of E. aerogenes, and their channel 

properties have been documented (257, 258). Regarding the involvement of this efflux pump 

in the resistance of clinical strains, various publications have reported the expression of 

AcrAB-TolC and its contribution in the reduced susceptibility of the isolates produced (201, 

239, 240, 255, 268). Finally, the protein AcrZ, which has been described in the E. coli AcrZ-

AcrAB-TolC efflux pump, has also been characterized in the Enterobacter/Klebsiella genome 

(269, 270). 

Recently, the OqxAB operon has been identified in E. cloacae and E. aerogenes strains, 

and this efflux pump contributes to a decreased susceptibility to quinolones in 

Enterobacteriaceae (271). In addition, selective efflux pumps also have been identified and 

described to play a role in heavy-metal resistance/tolerance in E. hormachei and E. asburiae 

isolates (272).  

An important point is the relevance and the prevalence of AcrAB-TolC in clinical isolates. 

A study published in 2008 indicated that the evaluation of efflux activity, measured by using 

an efflux pump inhibitor (PAN) in clinical isolates collected within an 8-year period (1995-

2003), indicated a noticeable increase of efflux expression during this interval (109). 

Moreover, this study clearly pinpoints the importance of evaluating the prevalence of 

membrane barrier, e.g., the impermeability due to porin loss or/and efflux expression, in 

clinical strains submitted to antibiotherapy treatment, as recently mentioned (258). This 

aspect is important when taking into account the role of AcrAB-TolC in the E. aerogenes 

susceptibility toward macrolides (273). 
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A main concern is the correlation existing between efflux activity and intracellular 

accumulation of antibiotics (211). A series of publications focused on fluoroquinolone 

accumulation in E. aerogenes and E. coli strains expressing or not the AcrAB-TolC pump has 

clearly illustrated the impact of the efflux expression on the accumulation rate inside the 

bacterial cell (274-277). The expression of the AcrAB-TolC complex is able to manage the 

internal concentration of antibiotics under the threshold required for triggering the bacterial 

killing (267, 278). Moreover, by using a microspectrofluorimetry method, the authors report 

that the fluorescence drug signal varied among the individual bacteria in a uniformly treated 

population (274, 275). These important data illustrate the heterogeneity of the intrabacterial 

accumulation of an antibiotic during early incubation times. This heterogeneity may reflect 

different level of resistant phenotypes co-existing in the isogenic population due to different 

growth phase or division steps (274, 279). This may pave the way for identifying the bacterial 

adaptation and persister formation inside a bacterial population submitted to antibiotic stress 

(274, 275). 

In addition, these RND pumps are involved in the bacterial pathogenicity and in the 

acquisition of additional mechanisms of resistance in Enterobacteriaceae (197, 258, 266). 

Regarding E. cloacae and using a mouse model for measuring the competitiveness and 

virulence of AcrAB-TolC parental or deleted E. cloacae strains, the G. Bou's group has 

clearly demonstrated the involvement of this pump in the bacterial physiology (280). 

iv) LPS modification and polymyxin susceptibility 

Various alterations of the OM structure are also associated with the LPS modifications in 

Enterobacter spp. clinical isolates that induce some changes in polymyxin susceptibility (110, 

281-282). In some cases, the plasmid-mediated colistin resistance mcr-1 has been identified in 

resistant E. aerogenes and E. cloacae strains (282-285). A study reports that the overall 

prevalence of colistin-resistant corresponds to 0.67% of the total enterobacterial isolates 

collected during a four-year period. The colistin resistance was higher in E. cloacae (4.2%) 
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than in E. coli and K. pneumoniae (0.5% and 0.4% respectively). Although the authors 

reported that this resistance was not associated with the mcr genes, unfortunately, the 

molecular and genetic characterization of this resistance is missing (286). In a recent study, 

Guérin et al. analyzed a collection of 124 strains of the E. cloacae complex and concluded 

that the PhoP/PhoQ TCS would play a role in colistin-resistance regulation (287). This 

observation is similar to work performed on E. aerogenes clinical isolates collected from 

patients receiving imipenem (239). In a polymyxin-resistant strain, the authors identified 

mutations located on phoQ and pmrB, which are part of the well-described TCS controlling 

the LPS-modifying enzymes (239). The genome of the colistin-resistant strain identified in 

2005 has been sequenced and analyzed, and a mutation in pmrA has been identified as the 

cause of the alteration of LPS biosynthesis, which has been previously observed (37, 110). 

This type of chromosomal mutation that efficiently alters the OM structure and generates a 

noticeable decrease of the polymyxin activity may be involved in the emergence of resistant 

strain devoid of mcr-1 and mcr-2 (249). Moreover, the dynamic of colistin resistance in E. 

cloacae has been recently reported during selective decontamination of a digestive tract in 

intensive care units, suggesting a possible clonal transmission (288).  

Mutations in antibiotics target 

Regarding -lactam resistance, the target mutation occurs rarely in Enterobacter spp. 

However, the diverse -lactamases reported today are the result of a series of mutations 

that have successively appeared in the original -lactamase genes (289). Moreover, 

mutations affecting the ampR gene strains are described in strains where AmpC 

cephalosporinase is derepressed (202, 290, 291). In MDR Enterobacter isolates, multiple 

point sequence alterations can be foud in ampC but are not in the serine active site or the -

lactam binding site and have no correlation with the resistance phenotype (248). However, 

in other cases was found amino-acids deletion in the Ω loop of E. cloacae AmpC, 
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associated to enzyme competitiveness and point mutations in strains selected with 

ceftaroline-avibactam , suspected to affect the activity of the enzyme (292).  

About the mutations that contribute to antibiotic resistance, the best characterized are those 

that affect the quinolone target and, more recently, those involved in polymyxin resistance 

(see previous section). In Enterobacter spp., mutations located into the quinolone 

resistance-determining regions (QRDRs) of targeted enzymes, e.g. gyrase or 

topoisomerase, have been described to confer high-level resistance (24, 239, 293-295). 

This is the common resistance mechanism identified in clinical isolates with recent 

description of plasmid-mediated quinolone resistance (70, 72, 73, 296, 297). Recent studies 

in South Africa reported that qnr genes were commonly detected in resistant Enterobacter 

isolates collected in a hospital (298, 299). Interestingly, recently the qnrE1 gene was 

reported as probably originating from the Enterobacter spp. chromosome (300). This 

"target protective mechanism" confers low-level resistance to first-generation quinolones 

when present alone (72-74). Importantly, these PMRQ mechanisms exhibit a noticeable 

spread and have been reported in approximately 60% of clinical isolates due to the 

presence of various genes coding for ESBLs or AmpC-type β-lactamases on the same 

plasmid (70, 291, 297).  

Lastly, MDR has recently been described in Enterobacter isolates (E. cloacae and E. 

aerogenes) and in MDR-associated porin alteration, target mutation -lactamase 

production, and the efflux overexpression that are accumulated during antibiotic treatment 

(24, 239). Some mechanisms are intertwined and controlled by regulators in a complex 

genetic cascade. 

Multiple-drug resistance and genetic regulation 

Recently, several chemical inducers that are able to modulate the expression of Enterobacter 

membrane transporters, including porins and/or efflux pumps, have been described, e.g., 
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salicylate, chloramphenicol, etc. (24, 195, 241, 301). Interestingly, the regulation of porin 

expression is a fast event, occurring shortly after the addition of chemicals in the culture 

medium or with the addition of subinhibitory concentrations of antibiotics. During incubation 

with low imipenem concentrations, an increase in the efflux pump expression that is mediated 

by the overproduction of MarA has been observed during the incubation (105, 245, 301). 

i) MarA, RamA, SoxS, RobA (Figure 1) 

Regarding global regulators involved in the control of antibiotic resistance, importantly, 

the RamA regulator has been characterized in Enterobacter, Salmonella and Klebsiella, but it 

has not been detected in Escherichia in contrast to the Mar regulon (24, 26). 

RamA has been detected in E. aerogenes and cloacae and has generated a noticeable 

resistance to various antibiotics (chloramphenicol, tetracycline, tigecycline, fluoroquinolones, 

trimethoprim, etc.), in conjunction with a decreased expression of Omp35 and an active efflux 

in E. aerogenes (24, 273). RamA seems to be a "super regulator" of the membrane 

permeability, acting directly or via MarA and controlling the influx and the efflux of 

antibacterial agents in Enterobacter (24, 30). In addition, rarA may also contribute to the 

combined regulation of the RamA-MarA cascade during the emergence of antibiotic 

resistance (302, 303). RarA that belongs to the AraC-type transcriptional regulator is 

overproduced when the negative regulator OqxR is inactivated (25, 304). SoxS and Rob can 

also play a role by sharing some information detected via other signaling systems in 

Enterobacter (25, 280). Regarding the environmental stress, H-NS (histone-like structuring 

nucleoid protein) modulates the level and balance (e.g. Omp35/Omp36 ratio) of porins in the 

outer membrane in response to osmotic stress (24, 25). 

ii)    Other regulators (Figure 1) 

With these global regulators, several other partners play a key role in monitoring the 

expression of porins: OmpX, a small OM protein, and different sRNAi, such as Mic35 and 

Mic36 (241-243). In addition, several TCS, such as EnvZ-OmpR, and CpxA-CpxR, can 
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regulate the expression level of porins. In parallel, other TCS, PmrA-PmrB, and PhoQ-PhoR 

involved in the synthesis of LPS, which is involved in the last step of porin assembly in the 

OM, may also modulate the porin level in the OM. Importantly, some mutations have been 

identified in TCS, such as PmrAB or CpxAB, indicating that, under antibiotic treatment, 

clinical strains are able to select mutations that can modify the membrane permeability in 

order to acquire low susceptibility against used antibiotics (239). 

Several local regulators, repressors such as acrR or rarR, play a role by controlling the 

expression of efflux pumps; a more detailed description has recently been published of the 

regulators involved in the control of drug membrane transporters in Enterobacter and 

Klebsiella (25), and an illustration of this complex network is presented in Figure 1. This 

illustration has been constructed by using the publications on this subject and descriptions of 

the genes and proteins in the databank.  

iii)    Inducers and chemical effectors 

Some inducers are described as binding directly to the repressor MarR, such as salicylate 

and tetracycline, thereby impairing the repressor action (25). The transcriptional activators 

respond to a variety of chemically unrelated compounds, including antibiotics, biocides, 

carbonyl cyanide m-chlorophenylhydrazone, cyclohexane, salicylate, acetylsalicylate 

(aspirin), acetaminophen, sodium benzoate, paraquat, and phenolic rings (24). However, the 

exact mode of action of this induction is not yet elucidated, and further investigation are 

necessary to understand the targeted step in the regulation cascade (Figure 1).  

DIAGNOSIS OF SPECIES 

The routine identification of Enterobacter spp. has been classically performed by an 

evaluation of their phenotypic characters by commercialized systems: the Api 20E® gallery 

or Vitek®2 (bioMérieux). If these systems are adapted to differentiate E. aerogenes and E. 

cloacae, they are limited to differentiating the subspecies in the E. cloacae complex except 

for E. cloacae and E. asburiae.  

http://www.tufts.edu/med/microbiology/lab/levy/acetsal.htm
http://www.bris.ac.uk/Depts/Chemistry/MOTM/aspirin/aspirin1.htm
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Mass spectrophotometry, which is increasingly used today, can identify the E. cloacae 

complex but fails to differentiate the species within the group. The two most commonly used 

devices have failures on this identification. E. nimipressuralis is identified correctly when, on 

the other hand, E. hormaechei, E. cloacae, E. asburiae, E. kobei and E. ludwigii are not 

discriminated (305, 306).  

Molecular biology techniques are needed to identify the species precisely. Sequencing of 16S 

rRNA is widely used to identify Enterobacter spp. but this technology can not differentiate 

two closely related species, hence its lack of applicability to the case of the E. cloacae 

complex (40). The technique of microarray-CGH or comparative genomic hybridization is 

also a powerful identification method, but this method is time-consuming, expensive, and 

therefore difficult to implement routinely. It showed the existence of two distinct clades, 

genetically different within the complex. Possibly, this method could be coupled with that of 

MLSA. The first clade is then divided into two clusters, with the second being more 

heterogeneous and containing five clusters. Most strains associated with infections belong to 

the first clade (34). Recently, the MLSA wich employs sequencing of four to seven of 

housekeeping genes such as atpD, fusA, idC,infB, gyrB, leuS, dnaA,pyrG, rplB, rpoB and 

hsp60, appeared to be the most valuable tool to identify of E. cloacae complex species and the 

most recent Enterobacter species (4, 119). MLSA results are strongly validated by single 

nucleotide polymorphism analysis by whole genome sequence (4).By sequencing the hsp60 

gene, Hoffman and Roggenkamp discriminated thirteen clusters (clusters I to XII and cluster 

XIII, corresponding to an unstable sequence crowd) within the group (3, 55). More recently, 

Beyrouthy et al., using the same technique, confirmed characterisation of the two new 

subspecies of E. hormaechei obtained by complete genome sequencing and helped to 

complete the Enterobacter cloacae complex clusters (41, 210) (Table 4). Twelve clusters 

were attributed to existing species and more rencent described species as E. roggenkampi, E. 
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bugandensis and E. hormaechei subsp. hoffmanii (Table 4). The name E. hormaechei is 

sometimes given as a generic name for strains belonging to different clusters. 

Recently, a German team implemented a combination of two techniques to identify the 

species within the E. cloacae complex: mass spectrometry (MALDI-TOF MS) coupled with 

real-time PCR (306). Since mass spectrometry does not allow the species to be distinguished 

from each other, this group requires associations to be established using real-time PCR that 

amplifies the dnaJ gene. This gene, identified by Pham et al., encodes for a chaperone protein 

of the Hsp40 family and is specific for the E. cloacae species (307). Precise identification of 

the species in the E. cloacae complex is important in the biological diagnosis of infections 

because species are differently implicated in human pathology (11). Phenotypic techniques 

can lead to misidentifications between very different species harboring different virulence 

potentials, such as E. hormaechei and Cronobacter sakazakii. However, a species 

identification error has no impact on antibiotic therapy, as the species of the E. cloacae 

complex have the same antibiotic resistance profiles.  

CONCLUSION  

Until now, only few virulence factors/genes have been described in Enterobacter. In 

addition, the precise regulations and the molecular and functional properties involved in 

bacterial adaptation to various environmental stresses/conditions have not yet been precisely 

determined (10, 56, 147, 308-312).  

A main biological behavior reported in the Enterobacteriaceae seems to be associated 

with its ability to evade the activity of a huge collection of antibacterial agents, including 

antibiotics, disinfectants, biocides, etc. For instance, Enterobacter possesses a versatile and 

sophisticated system for regulating the envelope permeability as characterized above in 

clinical strains. It must be noted that the RamA operon, which is not present in Escherichia 
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sp., is playing a key role both directly and indirectly via the Mar operon: it can control the 

expression of porins and RND efflux complexes and it can complement or link its proper 

regulation cascade to other global regulators such as SoxS or Rob. The advantage of this 

additional global regulator associated with Mar regulon remains to be clarified in E. 

aerogenes and cloacae where it can play the role of an enhancer ring or accelerate the 

bacterial adaptation to environmental stress and contribute to the prevalence of these Gram-

negative bacteria in human infectious diseases. 

The complete genome sequences of E. aerogenes and E. cloacae strains have enlightened the 

presence of resistance genes that contribute to the MDR phenotype, virulence, quorum 

sensing and the competition against other microorganisms (37, 121, 239, 313-316). Moreover, 

the whole-genome sequencing of clinical isolates collected during patient antibiotherapy in 

association with proteomic/functional studies has strongly enlightened the strategies 

developed by this important Gram-negative pathogen (239, 313). With this regards, the 

genus-level analysis/comparison of Enterobacter spp. versus K. pneumoniae indicates high 

genetic variation (average nucleotide diversity 0.16 compared to 0.02) (317). This difference 

suggests that these individual species may have different mechanisms and evolutionary 

pressures that govern them. The regulation cascades involved during colonization, virulence, 

resistance, support physiological changes that ensure rapid and appropriate responses to 

environmental stresses and this remarkable adaptability explains the Enterobacter presence in 

the ESKAPE group. 

The re-emergence of Enterobacter as a worrying resistant pathogen is an important health 

concern, especially when the scarcity of new antibiotics active against Gram-negative bacteria 

is considered. Consequently, much effort is necessary to identify/dissect the molecular and 

genetic events that manage the Enterobacter adaptation and to clarify the unknown aspects 

remaining in the regulation cascade.  
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ABBREVIATIONS 

AAC: aminoside-N-acétyltransférases 

APH: aminoside-O-phosphotransferases 

AAD: Aminosides adénylyltransférases 

ANT: aminoside-O-nucléotidyltransférases 

ESBL: Extended Spectrum Beta Lactamase 

ESKAPE pathogens: Enterococcus faecium, Staphylococcus aureus, Klebsiella 

pneumoniae,Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species 

HPI: High Pathogenicity Island 

ICU: Intensive Care Unit 

IM: Inner Membrane 

LPS: Lipopolysaccharide 

MDR: Multi Drug Resistance 

MIT-CIT: methylisothiazolinone-chloromethylisothiazolinone 

MLSA: Multi Locus Sequence Analysis 

OM: Outer Membrane 

TCS : Two Component Systems 

UTI: Urinary Tract Infections 
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FIGURES and TABLES 

 

Figure: Schematic representation of the regulation pathways that control the expression 

of porins and efflux pumps and their interconnection in Enterobacter spp.  

The multiple regulation cascades that can modulate the outer membrane permeability (porins, 

LPS) and the expression of major efflux pumps (AcrAB, OqxAB) are summarized.  

Blue arrows represent transcriptional activation/repression of different genes such as acrR, 

ompX, by the global regulators (e.g. Mar/Ram/Sox). Red arrows symbolize the external stress 

signals that can activate/repress some gene expression. Black arrows indicate the negative 

regulation on gene expression (thin lane directly on promoter/operator region). Yellow 

squares illustrate some unknown regulation that can modulate gene expression on 

promoter/operator regions (represented by dashed boxes) of key loci. Dashed lines represent 

some hypothesized regulations. 
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Table 1. Biochemical characters for the identification of species of the genus 

Enterobacter (4, 5, 48, 55, 75, 82, 85, 121). 

 

  

Yellow 
Pigment  

 

 
LDC 

 

 
ADH 

 

 
URE 

 

 
ESC 

Fermentations 
 

INO 
 

SOR 
 

SAC 
 

MEL 
 

RAF 
 

AMG 
 

DUL 
 

ADO 
 

ARL 

E. amnigenus biogr. 1 - - - - + - - + + + V - - - 

E. amnigenus biogr. 2 - - V - + - + - + - + - - - 

E. cancerogenus - - + - + - - - - - - - - - 

E. asburiae - - (-) +/- + - + + V (+) + - - - 

E. cloacae subsp. 

cloacae 

- - + - - (-) + + + (+) (+) (-) (-) (-) 

E. cloacae subsp. 

dissolvens 

- - + +w + V + + + + + - - - 

E. hormaechei subsp. 

hormaechei 

- - (+) (+) - - - + - - + + - - 

E. kobei - - + + - + + + + + + V - - 

E. ludwigii - (-) + - - + + + + + + - -  

E. nimipressuralis - - - - + - + - + - + - -  

E. aerogenes - + - - + + + + + + + - +  

E. gergoviae - (+) - +w + - - + + + - - - + 

E. mori + + nd nd + nd + nd + nd nd nd nd + 

E. bugandensis - - + - w + + nd + + nd + - nd 

LDC lysine decarboxylase, ADH Arginine dihydrolase, URE urease, INO inositol, SOR sorbitol, SAC saccharose; MEL melibiose, RAF 

raffinose, AMG -methyl-D-glucoside, ADO adonitol and ARL D arabitol. + : positive reaction (> 90% of strains); (+) generally positive 

reaction; +w : reaction weakly positive; V : variable reaction; (-) generally negative reaction - : negative reaction (<90% of strains); +/- : 

variable depending of the method used; nd : not determined. 
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TABLE 2 Acquired resistances described in Enterobacter cloacae complex bacteria  

Antibiotics Mechanisms of resistance  Genes Species  References 

β-lactams Enzymatic  

β-lactamases  

Class A  blaTEM, blaSHV, 

blaCTX-M 

E. cloacae,  

E. hormaechei       

(63, 318) 

(319) 

blaVEB, blaGES/IBC, 

blaKPC,blaFRI  

E. cloacae  

E. hormaechei 

(212, 320) 

(321) 

blaNMCA, blaIMI E. cloacae, 

E. asburiae  

(322) 

(54) 

Class B  blaVIM, blaGIM  

blaNDM 

E. cloacae, 

E. ludwigii  

(69, 323, 324) 

(84) 

blaIMP, blaNDM  E. cloacae  

E. hormachei 

(211,325) 

Class C  ampC  E. cloacae,  

E. asburiae,  

E. hormaechei,  

E. kobei  

E. ludwigii  

E. nimipressuralis 

(290, 297) 

(3) 

(215) 

(165) 

(165) 

(165) 

Class D  blaOXA-48  E. cloacae  (324) 

Impermeability/efflux acrAB-tolC, ompC, 

ompF, ompX 

E. cloacae  (25,31,267,242, 

243, 326) 

Fluoroquinolones  Target mutation  gyrA, gyr B, parC, 

parE 

E. cloacae  (293) 

Enzymatic (acetyltransferase) aac(6´)-Ib-cr  E. cloacae (150) 

Protective mechanism target qnr (A, B, S, C, D)  E. cloacae,  

E. hormaechei  

(327) 

Efflux qepA, acrAB-tolC, 

oqxAB, sugE, emmdR 

E. cloacae  (262, 263, 267) 

Aminoglycosides  Enzymatic (acetyl, phospho, 

nucleotidyltransferase) 

Methylase 

aac, aph, ant 

 

armA, rmtB 

E. cloacae  

 

E. cloacae 

(327) 

 

(328) 

Cyclines  Efflux  acrAB-tolC E. cloacae  

E. hormaechei  

(329) 
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TABLE 3 

Some examples of the membrane proteins identified in Enterobacter spp. 

 

Bacteria Name/protein Function characteristics Reference 

E. cloacae     

 OmpE35 general porin trimer (232, 235)  

 OmpE36 general porin trimer (232, 235) 

 OmpE37 quiescent porin trimer  

 OmpX  monomer (242) 

 OmpA OM architecture nd  

 LamB   (330) 

 PhoE   (244) 

 EmmdR IM transporter  (262, 263) 

 SugE IM transporter  (262, 263) 

 TolC OM channel trimer (256) 

 AcrA adapter nd (256) 

 AcrB IM transporter trimer (256) 

     

E. aerogenes     

 Omp35 general porin trimer (232, 245)  

 Omp36 general porin trimer (232, 245) 

 Omp37 quiescent porin trimer Bornet unpublished 

data 

 OmpX small channel nd (241) 

 OmpA OM architecture monomer (201, 226) 

 LamB maltoporin trimer (240) 

 PhoE phosphoporin nd nd 

 Tsx nucleoside uptake nd (227) 

 TolC OM channel trimer (255) 

 AcrA adapter nd (255) 
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 AcrB IM transporter trimer (255) 

 EefC OM channel trimer (331, 332) 

 EefA adapter nd (331, 332) 

 EefB IM transporter trimer (331, 332) 
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TABLE 4  

Distribution of clusters and species of the Enterobacter cloacae Complex (CEC) using the 

hsp60 sequencing technique (165, 210). 

 

Cluster Species 

Cluster I E. asburiae 

Cluster II E. kobei 

Cluster III E. hormaechei subsp. hoffmannii 

Cluster IV E. roggenkampii 

Cluster V E. ludwigii 

Cluster VI E. hormaechei subsp. oharae and xiangfangensis 

Cluster VII E. hormaechei subsp. hormaechei   

Cluster VIII E. hormaechei subsp. steigerwalti 

Cluster IX E. bugandensis 

Cluster X E. nimipressuralis 

Cluster XI E. cloacae subsp. cloacae 

Cluster XII E. cloacae subsp. dissolvens 

Cluster XIII E. cloacae sequence crowd 
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