G. Terlinde and G. Fischer, Beta Titanium Alloys. In Titan and Titan Alloys: Fundamentals and Applications

C. Leyens, M. Peters, . Eds, and V. Wiley, , vol.2, pp.37-57, 2005.

J. Grotberg, A. Hamlekhan, A. Butt, S. Patel, D. Royhman et al., Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V, Mater. Sci. Eng. C, vol.59, pp.677-689, 2016.

P. Roy, S. Berger, and P. Schmuki, TiO 2 nanotubes: Synthesis and applications, Angew. Chem. Int. Ed, vol.50, pp.2904-2939, 2011.

D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart et al., Preparation of TiO 2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization, J. Biomed. Mater. Res, vol.59, pp.18-28, 2002.

S. Minagar, C. C. Berndt, J. Wang, E. Ivanova, and C. Wen, A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces, Acta Biomater, vol.8, pp.2875-2888, 2012.

S. M. Kurtz, K. L. Ong, J. Schmier, K. Zhao, F. Mowat et al., Primary and revision arthroplasty surgery caseloads in the United States from 1990 to, J. Arthroplast, vol.24, pp.195-203, 2004.

M. T. Mohammed, Z. A. Khan, and A. N. Siddiquee, Surface modifications of titanium materials for developing corrosion behavior in human body environment: A review, Procedia Mater. Sci, vol.6, pp.1610-1618, 2014.

O. Çomakl?, M. Yaz?c?, T. Yetim, A. F. Yetim, and A. Çelik, The effect of calcination temperatures on structural and electrochemical properties of TiO 2 film deposited on commercial pure titanium, Surf. Coat. Technol, vol.285, pp.298-303, 2016.

M. Jamesh, S. Kumar, T. S. Sankara-narayanan, and P. K. Chu, Effect of thermal oxidation on the corrosion resistance of Ti 6 Al 4 V alloy in hydrochloric and nitric acid medium, Mater. Corros, vol.64, pp.902-907, 2013.

M. V. Diamanti, B. Del-curto, and M. Pedeferri, Anodic oxidation of titanium: From technical aspects to biomedical applications, J. Appl. Biomater. Biomech, vol.9, pp.55-69, 2011.

M. Doulache, M. Trari, and A. Benchettara, The oxidation of titanium thin films in phosphoric medium, Prot. Met. Phys. Chem. Surf, vol.50, pp.200-208, 2014.

L. Mascaretti, R. Matarrese, A. Ravanelli, M. Isacchi, P. Mazzolini et al., Tuning the photoelectrochemical properties of hierarchical TiO 2 nanostructures by control of pulsed laser deposition and annealing in reducing conditions, Int. J. Hydrogen Energy, vol.42, pp.26639-26651, 2017.

N. Vershinin, K. Filonov, B. Straumal, W. Gust, R. Dimitriou et al., Corrosion resistance of the vacuum arc deposited Ti, TiN and TiO 2 coatings on large area glass substrates, Surf. Coat. Technol, vol.125, pp.223-228, 2000.

M. St?pie?, P. Handzlik, and K. Fitzner, Electrochemical synthesis of oxide nanotubes on Ti6Al7Nb alloy and their interaction with the simulated body fluid, J. Solid State Electrochem, vol.20, pp.2651-2661, 2016.

L. N. Wang and J. L. Luo, Electrochemical behaviour of anodic zirconium oxide nanotubes in simulated body fluid, Appl. Surf. Sci, vol.258, pp.4830-4833, 2012.

V. Barranco, M. L. Escudero, and M. C. García-alonso, 3D, chemical and electrochemical characterization of blasted TI6Al4V surfaces: Its influence on the corrosion behavior, Electrochim. Acta, vol.52, pp.4374-4384, 2007.

L. Guéhennec, L. Soueidan, A. Layrolle, P. Amouriq, and Y. , Surface treatments of titanium dental implants for rapid osseointegration, Dent. Mater, vol.23, pp.844-854, 2007.

K. Anselme, P. Davidson, A. M. Popa, M. Giazzon, M. Liley et al., The interaction of cells and bacteria with surfaces structured at the nanometre scale, Acta Biomater, vol.6, pp.3824-3846, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02384171

M. C. Advincula, D. Petersen, F. Rahemtulla, R. Advincula, and J. E. Lemons, Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants, J. Biomed. Mater. Res. B, vol.80, pp.107-120, 2007.

D. Khudhair, A. Bhatti, Y. Li, H. A. Hamedani, H. Garmestani et al., Anodization parameters influencing the morphology and electrical properties of TiO 2 nanotubes for living cell interfacing and investigations, Mater. Sci. Eng. C, vol.59, pp.1125-1142, 2016.

E. Matykina, R. Arrabal, R. Z. Valiev, J. M. Molina-aldareguia, P. Belov et al., Electrochemical Anisotropy of Nanostructured Titanium for Biomedical Implants, Electrochim. Acta, vol.176, pp.1221-1232, 2015.

C. Giordano, E. Saino, L. Rimondini, M. P. Pedeferri, L. Visai et al., Electrochemically induced anatase inhibits bacterial colonization on Titanium Grade 2 and Ti6Al4V alloy for dental and orthopedic devices, Colloids Surf. B, vol.88, pp.648-655, 2011.

E. M. Szesz, B. L. Pereira, N. K. Kuromoto, C. E. Marino, G. B. De-souza et al., Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes. Thin Solid Film, vol.528, pp.163-166, 2013.

L. Salou, A. Hoornaert, G. Louarn, and P. Layrolle, Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits, Acta Biomater, vol.11, pp.494-502, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01793581

N. K. Awad, S. L. Edwards, and Y. S. Morsi, A review of TiO 2 NTs on Ti metal: Electrochemical synthesis, functionalization and potential use as bone implants, Mater. Sci. Eng. C, vol.76, pp.1401-1412, 2017.

D. Regonini, C. R. Bowen, A. Jaroenworaluck, and R. Stevens, A review of growth mechanism, structure and crystallinity of anodized TiO 2 nanotubes, Mater. Sci. Eng. R, vol.74, pp.377-406, 2013.

D. Kowalski, D. Kim, and P. Schmuki, TiO 2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications, Nano Today, vol.8, pp.235-264, 2013.

J. M. Macak and P. Schmuki, Anodic growth of self-organized anodic TiO 2 nanotubes in viscous electrolytes, Electrochim. Acta, vol.52, pp.1258-1264, 2006.

A. Mazare, M. Dilea, D. Ionita, I. Titorencu, V. Trusca et al., Changing bioperformance of TiO 2 amorphous nanotubes as an effect of inducing crystallinity, Bioelectrochemistry, vol.87, pp.124-131, 2012.

B. Munirathinam and L. Neelakantan, Titania nanotubes from weak organic acid electrolyte: Fabrication, characterization and oxide film properties, Mater. Sci. Eng. C, vol.49, pp.567-578, 2015.

S. P. Albu, H. Tsuchiya, S. Fujimoto, and P. Schmuki, TiO 2 nanotubes-Annealing effects on detailed morphology and structure, Eur. J. Inorg. Chem, pp.4351-4356, 2010.

A. Mazare, G. Totea, C. Burnei, P. Schmuki, I. Demetrescu et al., Corrosion, antibacterial activity and haemocompatibility of TiO 2 nanotubes as a function of their annealing temperature, Corros. Sci, vol.103, pp.215-222, 2016.

B. Munirathinam and L. Neelakantan, Role of crystallinity on the nanomechanical and electrochemical properties of TiO 2 nanotubes, J. Electroanal. Chem, vol.770, pp.73-83, 2016.

O. K. Varghese, D. Gong, M. Paulose, C. A. Grimes, and E. C. Dickey, Crystallization and high-temperature structural stability of titanium oxide nanotube arrays, J. Mater. Res, vol.18, pp.156-165, 2003.

H. Fraoucene, V. A. Sugiawati, D. Hatem, M. S. Belkaid, F. Vacandio et al., Optical and electrochemical properties of self-organized TiO 2 nanotube arrays from anodized Ti-6Al-4V alloy, Front. Chem, vol.7, pp.1-9, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02461183

L. C. Campanelli, C. C. Bortolan, P. S. Da-silva, C. Bolfarini, and N. T. Oliveira, Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys, J. Mech. Behav. Biomed. Mater, vol.65, pp.542-551, 2017.

J. M. Macak, H. Tsuchiya, L. Taveira, A. Ghicov, and P. Schmuki, Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH 4 F solutions, J. Biomed. Mater. Res. A, vol.75, pp.928-933, 2005.

S. Kumar, T. S. Narayanan, S. G. Raman, and S. K. Seshadri, Thermal oxidation of CP-Ti: Evaluation of characteristics and corrosion resistance as a function of treatment time, Mater. Sci. Eng. C, vol.29, pp.1942-1949, 2009.

O. Khatim, M. Amamra, K. Chhor, A. M. Bell, D. Novikov et al., Amorphous-anatase phase transition in single immobilized TiO 2 nanoparticles, Chem. Phys. Lett, vol.558, pp.53-56, 2013.

C. C. Ting, S. Y. Chen, and D. M. Liu, Preferential growth of thin rutile TiO 2 films upon thermal oxidation of sputtered Ti films. Thin Solid Film, vol.402, pp.290-295, 2002.

K. Hotchkiss, G. Reddy, S. Hyzy, Z. Schwartz, B. Boyan et al., Titanium surface characteristics, including topography and wettability, alter macrophage activation, Acta Biomater, vol.31, pp.425-434, 2016.

T. Wassmann, S. Kreis, M. Behr, and R. Buergers, The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants, Int. J. Implant. Dent, vol.3, 2017.

Y. Wang, Z. Yu, K. Li, and J. Hu, Effects of surface properties of titanium alloys modified by grinding, sandblasting and acidizing and nanosecond laser on cell proliferation and cytoskeleton, Appl. Surf. Sci, vol.2020, 144279.

D. Khang, J. Lu, C. Yao, K. M. Haberstroh, and T. J. Webster, The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium, Biomaterials, vol.29, pp.970-983, 2008.

A. Roguska, M. Pisarek, A. Belkarz, L. Marcon, M. Holdynski et al., Improvement of the bio-functional properties of TiO 2 nanotubes, Appl. Surf. Sci, vol.388, pp.775-785, 2016.