G. D. Stormo, Modeling the specificity of protein-DNA interactions, Quant Biol Beijing China, vol.1, issue.2, pp.115-145, 2013.

D. S. Johnson, A. Mortazavi, R. M. Myers, and B. Wold, Genome-wide mapping of in vivo protein-DNA interactions, Science, vol.316, issue.5830, pp.1497-502, 2007.

O. Hallikas and J. Taipale, High-throughput assay for determining specificity and affinity of protein-DNA binding interactions, Nat Protoc, vol.1, issue.1, pp.215-237, 2006.

M. F. Berger and M. L. Bulyk, Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors, Nat Protoc, vol.4, issue.3, pp.393-411, 2009.

Y. Orenstein and R. Shamir, Modeling protein-DNA binding via high-throughput in vitro technologies, Brief Funct Genomics, vol.16, issue.3, pp.171-80, 2017.

E. Wingender, The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation, Brief Bioinform, vol.9, issue.4, pp.326-358, 2008.

A. Khan, O. Fornes, A. Stigliani, M. Gheorghe, J. A. Castro-mondragon et al., update of the open-access database of transcription factor binding profiles and its web framework, Nucleic Acids Res, vol.46, issue.D1, p.1284, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01980416

L. J. Zhu, R. G. Christensen, M. Kazemian, C. J. Hull, M. S. Enuameh et al., FlyFactorSurvey: a database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system, Nucleic Acids Res, vol.39, pp.111-118, 2011.

C. G. De-boer and T. R. Hughes, YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities, Nucleic Acids Res, vol.40, pp.169-79, 2012.

T. Liu, J. A. Ortiz, L. Taing, C. A. Meyer, B. Lee et al., Cistrome: an integrative platform for transcriptional regulation studies, Genome Biol, vol.12, issue.8, p.83, 2011.

I. V. Kulakovskiy, I. E. Vorontsov, I. S. Yevshin, R. N. Sharipov, A. D. Fedorova et al., HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis, Nucleic Acids Res, vol.46, issue.D1, pp.252-261, 2018.

M. A. Hume, L. A. Barrera, S. S. Gisselbrecht, and M. L. Bulyk, UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions, Nucleic Acids Res, vol.43, pp.117-139, 2015.

M. T. Weirauch, A. Yang, M. Albu, A. G. Cote, A. Montenegro-montero et al., Determination and inference of eukaryotic transcription factor sequence specificity, Cell, vol.158, issue.6, pp.1431-1474, 2014.

B. Contreras-moreira and A. Sebastian, FootprintDB: analysis of plant cisregulatory elements, transcription factors, and binding interfaces, Methods Mol Biol Clifton NJ, vol.1482, pp.259-77, 2016.

R. Janky, A. Verfaillie, H. Imrichová, B. Van-de-sande, L. Standaert et al., iRegulon: from a gene list to a gene regulatory network using large motif and track collections, PLoS Comput Biol, vol.10, issue.7, p.1003731, 2014.

S. Heinz, C. Benner, N. Spann, E. Bertolino, Y. C. Lin et al., Simple combinations of lineage-determining transcription factors prime cisregulatory elements required for macrophage and B cell identities, Mol Cell, vol.38, issue.4, pp.576-89, 2010.

M. Tompa, N. Li, T. L. Bailey, G. M. Church, D. Moor et al., Assessing computational tools for the discovery of transcription factor binding sites, Nat Biotechnol, vol.23, issue.1, pp.137-181, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01624324

J. Hu, B. Li, and D. Kihara, Limitations and potentials of current motif discovery algorithms, Nucleic Acids Res, vol.33, issue.15, pp.4899-913, 2005.

M. T. Weirauch, A. Cote, R. Norel, M. Annala, Y. Zhao et al., Evaluation of methods for modeling transcription factor sequence specificity, Nat Biotechnol, vol.31, issue.2, pp.126-160, 2013.

Y. Orenstein and R. Shamir, A comparative analysis of transcription factor binding models learned from PBM, HT-SELEX and ChIP data, Nucleic Acids Res, vol.42, issue.8, p.63, 2014.

C. K. Kibet and P. Machanick, Transcription factor motif quality assessment requires systematic comparative analysis

T. L. Bailey and P. Machanick, Inferring direct DNA binding from ChIP-seq, Nucleic Acids Res, vol.40, issue.17, p.128, 2012.

G. R. Stark and J. E. Darnell, The JAK-STAT pathway at twenty, Immunity, vol.36, issue.4, pp.503-517, 2012.

S. Pal, J. Hoinka, and T. M. Przytycka, Co-SELECT reveals sequence non-specific contribution of DNA shape to transcription factor binding in vitro, Nucleic Acids Res, vol.47, issue.13, pp.6632-6673, 2019.

J. Chèneby, M. Gheorghe, M. Artufel, A. Mathelier, and B. Ballester, ReMap 2018: an updated atlas of regulatory regions from an integrative analysis of DNAbinding ChIP-seq experiments, Nucleic Acids Res, vol.46, issue.D1, pp.267-75, 2018.

A. Jolma, J. Yan, T. Whitington, J. Toivonen, K. R. Nitta et al., DNA-binding specificities of human transcription factors, Cell, vol.152, issue.1-2, pp.327-366, 2013.

L. Yang, Y. Orenstein, A. Jolma, Y. Yin, J. Taipale et al., Transcription factor family-specific DNA shape readout revealed by quantitative specificity models, Mol Syst Biol, vol.13, issue.2, p.910, 2017.

A. Sandelin, W. W. Wasserman, and B. Lenhard, ConSite: web-based prediction of regulatory elements using cross-species comparison, Nucleic Acids Res, vol.32, pp.249-52, 2004.

E. Wingender, T. Schoeps, M. Haubrock, M. Krull, and J. Dönitz, TFClass: expanding the classification of human transcription factors to their mammalian orthologs, Nucleic Acids Res, vol.46, issue.D1, pp.343-350, 2018.

L. Van-der-maaten and G. Hinton, Visualizing data using t-SNE, J Mach Learn Res, vol.9, pp.2579-605, 2008.

P. J. Balwierz, M. Pachkov, P. Arnold, A. J. Gruber, M. Zavolan et al., ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs, Genome Res, vol.24, issue.5, pp.869-84, 2014.

S. A. Lambert, A. Yang, A. Sasse, G. Cowley, M. Albu et al., Similarity regression predicts evolution of transcription factor sequence specificity, Nat Genet, vol.51, issue.6, pp.981-990, 2019.

. Fantom-consortium, A. Forrest, H. Kawaji, M. Rehli, J. K. Baillie et al., A promoter-level mammalian expression atlas, Nature, vol.507, issue.7493, pp.462-70, 2014.

T. Tamura, P. Thotakura, T. S. Tanaka, M. Ko, and K. Ozato, Identification of target genes and a unique cis element regulated by IRF-8 in developing macrophages, Blood, vol.106, issue.6, pp.1938-1985, 2005.

A. Gagliardi, N. P. Mullin, Y. Tan, Z. Colby, D. Kousa et al., A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal, EMBO J, vol.32, issue.16, pp.2231-2278, 2013.

D. Papatsenko, H. Darr, I. V. Kulakovskiy, A. Waghray, V. J. Makeev et al., Single-cell analyses of ESCs reveal alternative pluripotent cell states and molecular mechanisms that control self-renewal, Stem Cell Rep, vol.5, issue.2, pp.207-227, 2015.

A. Jolma, Y. Yin, K. R. Nitta, D. K. Popov, A. Taipale et al., DNA-dependent formation of transcription factor pairs alters their binding specificity, Nature, vol.527, issue.7578, pp.384-392, 2015.

R. Dréos, G. Ambrosini, R. Groux, R. C. Périer, and P. Bucher, MGA repository: a curated data resource for ChIP-seq and other genome annotated data, Nucleic Acids Res, vol.46, issue.D1, pp.175-80, 2017.

P. W. Harrison, B. Alako, C. Amid, A. Cerdeño-tárraga, C. I. Holt et al., The European nucleotide archive in 2018, Nucleic Acids Res, vol.47, issue.D1, pp.84-92, 2019.

P. Bucher, G. Ambrosini, I. Vorontsov, D. Penzar, R. Groux et al., Benchmarks for the paper "Insights gained from a comprehensive all against-all transcription factor binding motif benchmarking study, 2020.

I. E. Vorontsov, I. V. Kulakovskiy, and V. J. Makeev, Jaccard index based similarity measure to compare transcription factor binding site models, Algorithms Mol Biol AMB, vol.8, issue.1, p.23, 2013.

F. Pedregosa, G. Varoquaux, A. Gramfort, M. Vincent, B. Thirion et al., Scikit-learn: machine learning in Python, J Mach Learn Res, vol.12, pp.2825-2855, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

P. Bucher, G. Ambrosini, I. Vorontsov, D. Penzar, R. Groux et al., Insights gained from a comprehensive all against-all transcription factor binding motif benchmarking study, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02773294

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations