L. De-la-torre-ubieta, H. Won, J. L. Stein, and D. H. Geschwind, Advancing the understanding of autism disease mechanisms through genetics, Nat Med, vol.22, pp.345-61, 2016.

M. Quesnel-vallieres, R. J. Weatheritt, S. P. Cordes, and B. J. Blencowe, Autism spectrum disorder: insights into convergent mechanisms from transcriptomics, Nat Rev Genet, vol.20, pp.51-63, 2019.

D. H. Geschwind and J. Flint, Genetics and genomics of psychiatric disease, Science, vol.349, pp.1489-94, 2015.

S. De-rubeis, X. He, A. P. Goldberg, C. S. Poultney, K. Samocha et al., Synaptic, transcriptional and chromatin genes disrupted in autism, Nature, vol.515, pp.209-224, 2014.

T. Bourgeron, From the genetic architecture to synaptic plasticity in autism spectrum disorder, Nat Rev Neurosci, vol.16, pp.551-63, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01576592

B. Delorme, E. Nivet, J. Gaillard, T. Haupl, J. Ringe et al., The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties, Stem Cells Dev, vol.19, pp.853-66, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01736210

W. Murrell, F. Feron, A. Wetzig, N. Cameron, K. Splatt et al., Multipotent stem cells from adult olfactory mucosa, Dev Dyn, vol.233, pp.496-515, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00093306

F. Feron, B. Gepner, E. Lacassagne, D. Stephan, B. Mesnage et al., Olfactory stem cells reveal MOCOS as a new player in autism spectrum disorders, Mol Psychiatry, vol.21, pp.1215-1239, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01787249

R. R. Mendel and T. Kruse, Cell biology of molybdenum in plants and humans, Biochim Biophys Acta, vol.1823, pp.1568-79, 2012.

F. Gu, V. Chauhan, and A. Chauhan, Glutathione redox imbalance in brain disorders, Curr Opin Clin Nutr Metab Care, vol.18, pp.89-95, 2015.

M. Guttman, J. Donaghey, B. W. Carey, M. Garber, J. K. Grenier et al., lincRNAs act in the circuitry controlling pluripotency and differentiation, Nature, vol.477, pp.295-300, 2011.

J. A. Briggs, E. J. Wolvetang, J. S. Mattick, J. L. Rinn, and G. Barry, Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution, Neuron, vol.88, pp.861-77, 2015.

V. Briz, L. Restivo, E. Pasciuto, K. Juczewski, V. Mercaldo et al., The non-coding RNA BC1 regulates experience-dependent structural plasticity and learning, Nat Commun, vol.8, p.293, 2017.

J. Tang, Y. Yu, and W. Yang, Long noncoding RNA and its contribution to autism spectrum disorders, CNS Neurosci Ther, vol.23, pp.645-56, 2017.

N. N. Parikshak, V. Swarup, T. C. Belgard, M. Irimia, G. Ramaswami et al., Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism, Nature, vol.540, pp.423-430, 2016.

Y. Wang, X. Zhao, W. Ju, M. Flory, J. Zhong et al.,

, Genome-wide differential expression of synaptic long noncoding RNAs in autism spectrum disorder, Transl Psychiatry, vol.5, p.660, 2015.

M. N. Ziats and O. M. Rennert, Aberrant expression of long noncoding RNAs in autistic brain, J Mol Neurosci, vol.49, pp.589-93, 2013.

F. Kopp and J. T. Mendell, Functional classification and experimental dissection of long noncoding, RNAs. Cell, vol.172, pp.393-407, 2018.

T. Derrien, R. Johnson, G. Bussotti, A. Tanzer, S. Djebali et al., The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution
URL : https://hal.archives-ouvertes.fr/hal-01205054

, Genome Res, vol.22, pp.1775-89, 2012.

M. F. Lin, I. Jungreis, and M. Kellis, PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions, Bioinforma (Oxf, Engl), vol.27, pp.275-282, 2011.

J. Ponjavic, P. L. Oliver, G. Lunter, and C. P. Ponting, Genomic and transcriptional co-localization of protein-coding and long noncoding RNA pairs in the developing brain, PLoS Genet, vol.5, p.1000617, 2009.

A. D. Ramos, R. E. Anderson, S. J. Liu, T. J. Nowakowski, S. J. Hong et al., The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells, Cell Stem Cell, vol.16, pp.439-486, 2015.

A. G. Chiocchetti, D. Haslinger, J. L. Stein, L. De-la-torre-ubieta, E. Cocchi et al., Transcriptomic signatures of neuronal differentiation and their association with risk genes for autism spectrum and related neuropsychiatric disorders, Transl Psychiatry, vol.6, p.864, 2016.

P. L. Boutz, P. Stoilov, Q. Li, C. H. Lin, G. Chawla et al., A post-transcriptional regulatory switch in polypyrimidine tractbinding proteins reprograms alternative splicing in developing neurons, Genes Dev, vol.21, pp.1636-52, 2007.

Q. Li, S. Zheng, A. Han, C. H. Lin, P. Stoilov et al., The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation, Elife, vol.3, p.1201, 2014.

S. Zheng, E. E. Gray, G. Chawla, P. T. Porse, O. Dell et al., PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2, Nat Neurosc, vol.15, pp.381-389, 2012.

B. L. Gudenas, A. K. Srivastava, and L. Wang, Integrative genomic analyses for identification and prioritization of long non-coding RNAs associated with autism, PLoS ONE, vol.12, p.178532, 2017.

R. W. Yao, Y. Wang, and L. L. Chen, Cellular functions of long noncoding RNAs, Nat Cell Biol, vol.21, pp.542-51, 2019.

J. Tomikawa, H. Shimokawa, M. Uesaka, N. Yamamoto, Y. Mori et al., Single-stranded noncoding RNAs mediate local epigenetic alterations at gene promoters in rat cell lines, J Biol Chem, vol.286, pp.34788-99, 2011.

C. Gillberg, E. Fernell, E. Kocovska, H. Minnis, T. Bourgeron et al., The role of cholesterol metabolism and various steroid abnormalities in autism spectrum disorders: a hypothesis paper, Autism Res, vol.10, pp.1022-1066, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01577984

H. Wang, Lipid rafts: a signaling platform linking cholesterol metabolism to synaptic deficits in autism spectrum disorders, Front Behav Neurosci, vol.8, p.104, 2014.

L. K. Fung, R. A. Libove, J. Phillips, F. Haddad, and A. Y. Hardan, Brief report: an open-label study of the neurosteroid pregnenolone in adults with autism spectrum disorder, J Autism Dev Disord, vol.44, pp.2971-2978, 2014.

R. K. Sripada, C. E. Marx, A. P. King, J. C. Rampton, S. S. Ho et al., Allopregnanolone elevations following pregnenolone administration are associated with enhanced activation of emotion regulation neurocircuits, Biol Psychiatry, vol.73, pp.1045-53, 2013.

J. Zhang and Q. Liu, Cholesterol metabolism and homeostasis in the brain, Protein Cell, vol.6, pp.254-64, 2015.

N. A. Compagnone and S. H. Mellon, Neurosteroids: biosynthesis and function of these novel neuromodulators, Front Neuroendocrinol, vol.21, pp.1-56, 2000.

C. Goritz, D. H. Mauch, and F. W. Pfrieger, Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron, Mol Cell Neurosci, vol.29, pp.190-201, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00094057

R. Spellman, M. Llorian, and C. W. Smith, Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1, Mol Cell, vol.27, pp.420-454, 2007.

A. Anwar, P. M. Abruzzo, S. Pasha, K. Rajpoot, A. Bolotta et al., Advanced glycation endproducts, dityrosine and arginine transporter dysfunction in autism -a source of biomarkers for clinical diagnosis, Mol Autism, vol.9, p.3, 2018.

A. Castejon and J. Spaw, Autism and oxidative stress interventions: Impact on autistic behavior, Austin J Pharm Ther, vol.2, p.1015, 2014.

R. E. Frye, Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder, Epilepsy Behav, vol.47, pp.147-57, 2015.

T. Page and M. Coleman, Purine metabolism abnormalities in a hyperuricosuric subclass of autism, Biochim Biophys Acta, vol.1500, pp.291-297, 2000.

R. K. Naviaux, Antipurinergic therapy for autism-An in-depth review. Mitochondrion, vol.43, pp.1-15, 2018.

J. Lee, Y. S. Cho, H. Jung, and I. Choi, Pharmacological regulation of oxidative stress in stem cells, Oxid Med Cell Longev, p.4081890, 2018.

L. Schneider, S. Giordano, B. R. Zelickson, M. Johnson, G. Benavides et al., Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress, Free Radic Biol Med, vol.51, pp.2007-2024, 2011.

R. N. Doan, B. I. Bae, B. Cubelo, C. Chang, A. A. Hossain et al., Mutations in human accelerated regions disrupt cognition and social behavior, Cell, vol.167, pp.341-54, 2016.