D. Buttner, Protein Export According to Schedule: Architecture, Assembly, and Regulation of Type III Secretion Systems from Plant- and Animal-Pathogenic Bacteria, Microbiology and Molecular Biology Reviews, vol.76, issue.2, pp.262-310, 2012.

M. Marín, V. N. Uversky, and T. Ott, Intrinsic Disorder in Pathogen Effectors: Protein Flexibility as an Evolutionary Hallmark in a Molecular Arms Race, The Plant Cell, vol.25, issue.9, pp.3153-3157, 2013.

P. Wattiau, B. Bernier, P. Deslee, T. Michiels, and G. R. Cornelis, Individual chaperones required for Yop secretion by Yersinia., Proceedings of the National Academy of Sciences, vol.91, issue.22, pp.10493-10497, 1994.

P. Roblin, F. Dewitte, V. Villeret, E. G. Biondi, and C. Bompard, A Salmonella Type Three Secretion Effector/Chaperone Complex Adopts a Hexameric Ring-Like Structure, Journal of Bacteriology, vol.197, issue.4, pp.688-698, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02631331

M. Fauvart and J. Michiels, Rhizobial secreted proteins as determinants of host specificity in the rhizobium–legume symbiosis, FEMS Microbiology Letters, vol.285, issue.1, pp.1-9, 2008.

V. Viprey, A. Del-greco, W. Golinowski, W. J. Broughton, and X. Perret, Symbiotic implications of type III protein secretion machinery in Rhizobium, Molecular Microbiology, vol.28, issue.6, pp.1381-1389, 1998.

P. Poole, V. Ramachandran, and J. Terpolilli, Rhizobia: from saprophytes to endosymbionts, Nature Reviews Microbiology, vol.16, issue.5, pp.291-303, 2018.

J. A. Downie, The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots, FEMS Microbiology Reviews, vol.34, issue.2, pp.150-170, 2010.

A. Krause, A. Doerfel, and M. Göttfert, Mutational and Transcriptional Analysis of the Type III Secretion System of Bradyrhizobium japonicum, Molecular Plant-Microbe Interactions®, vol.15, issue.12, pp.1228-1235, 2002.

A. P. Tampakaki, Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria, Frontiers in Plant Science, vol.5, 2014.

C. Staehelin and H. B. Krishnan, Nodulation outer proteins: double-edged swords of symbiotic rhizobia, Biochemical Journal, vol.470, issue.3, pp.263-274, 2015.

C. Marie, W. J. Deakin, T. Ojanen-reuhs, E. Diallo, B. Reuhs et al., TtsI, a Key Regulator of Rhizobium Species NGR234 Is Required for Type III-Dependent Protein Secretion and Synthesis of Rhamnose-Rich Polysaccharides, Molecular Plant-Microbe Interactions®, vol.17, issue.9, pp.958-966, 2004.

F. López-baena, J. E. Ruiz-sainz, M. Rodríguez-carvajal, and J. M. Vinardell, Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis, International Journal of Molecular Sciences, vol.17, issue.5, p.755, 2016.

A. Teulet, N. Busset, J. Fardoux, D. Gully, C. Chaintreuil et al., The rhizobial type III effector ErnA confers the ability to form nodules in legumes, Proceedings of the National Academy of Sciences, vol.116, issue.43, pp.21758-21768, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02318403

H. B. Krishnan, J. Lorio, W. S. Kim, G. Jiang, K. Y. Kim et al., Extracellular Proteins Involved in Soybean Cultivar-Specific Nodulation Are Associated with Pilus-Like Surface Appendages and Exported by a Type III Protein Secretion System in Sinorhizobium fredii USDA257, Molecular Plant-Microbe Interactions®, vol.16, issue.7, pp.617-625, 2003.

C. De-lyra-mdo, Inactivation of the Sinorhizobium fredii HH103 rhcJ gene abolishes nodulation outer proteins (Nops) secretion and decreases the symbiotic capacity with soybean, Int. Microbiol, vol.9, pp.125-133, 2006.

S. Okazaki, S. Okabe, M. Higashi, Y. Shimoda, S. Sato et al., Identification and Functional Analysis of Type III Effector Proteins in Mesorhizobium loti, Molecular Plant-Microbe Interactions®, vol.23, issue.2, pp.223-234, 2010.

H. Miwa and S. Okazaki, How effectors promote beneficial interactions, Current Opinion in Plant Biology, vol.38, pp.148-154, 2017.

J. A. Kimbrel, W. J. Thomas, Y. Jiang, A. L. Creason, C. A. Thireault et al., Mutualistic Co-evolution of Type III Effector Genes in Sinorhizobium fredii and Bradyrhizobium japonicum, PLoS Pathogens, vol.9, issue.2, p.e1003204, 2013.

D. Bellincampi, F. Cervone, and V. Lionetti, Plant cell wall dynamics and wall-related susceptibility in plantâ??pathogen interactions, Frontiers in Plant Science, vol.5, 2014.

F. Pérez-montaño, I. Jiménez-guerrero, S. Acosta-jurado, P. Navarro-gómez, F. J. Ollero et al., A transcriptomic analysis of the effect of genistein on Sinorhizobium fredii HH103 reveals novel rhizobial genes putatively involved in symbiosis, Scientific Reports, vol.6, issue.1, p.31592, 2016.

I. C. Baumberger, N. Fraefel, M. Göttfert, and H. Hennecke, New NodW- or NifA-Regulated Bradyrhizobium japonicum Genes, Molecular Plant-Microbe Interactions®, vol.16, issue.4, pp.342-351, 2003.

I. Jiménez-guerrero, F. Pérez-montaño, A. Zdyb, M. Beutler, G. Werner et al., GunA of Sinorhizobium (Ensifer) fredii HH103 is a T3SS-secreted cellulase that differentially affects symbiosis with cowpea and soybean, Plant and Soil, vol.435, issue.1-2, pp.15-26, 2018.

M. Sandgren, J. Stahlberg, and C. Mitchinson, Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes, Progress in Biophysics and Molecular Biology, vol.89, issue.3, pp.246-291, 2005.

L. Holm and L. M. Laakso, Dali server update, Nucleic Acids Research, vol.44, issue.W1, pp.W351-W355, 2016.

M. Sandgren, P. J. Gualfetti, C. Paech, S. Paech, A. Shaw et al., TheHumicola griseaCel12A enzyme structure at 1.2 ? resolution and the impact of its free cysteine residues on thermal stability, Protein Science, vol.12, issue.12, pp.2782-2793, 2003.

A. Torronen, A. Harkki, and J. Rouvinen, Three-dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei: two conformational states in the active site, EMBO J, vol.13, pp.2493-2501, 1994.

Y. B. Park and D. J. Cosgrove, Xyloglucan and its Interactions with Other Components of the Growing Cell Wall, Plant and Cell Physiology, vol.56, issue.2, pp.180-194, 2015.

T. M. Gloster, F. M. Ibatullin, K. Macauley, J. M. Eklöf, S. Roberts et al., Characterization and Three-dimensional Structures of Two Distinct Bacterial Xyloglucanases from Families GH5 and GH12, Journal of Biological Chemistry, vol.282, issue.26, pp.19177-19189, 2007.

T. Yoshizawa, T. Shimizu, H. Hirano, M. Sato, and H. Hashimoto, Structural Basis for Inhibition of Xyloglucan-specific Endo-?-1,4-glucanase (XEG) by XEG-Protein Inhibitor, Journal of Biological Chemistry, vol.287, issue.22, pp.18710-18716, 2012.

M. Parniske, Uptake of bacteria into living plant cells, the unifying and distinct feature of the nitrogen-fixing root nodule symbiosis, Current Opinion in Plant Biology, vol.44, pp.164-174, 2018.

M. R. Tucker, H. Lou, M. Aubert, L. Wilkinson, A. Little et al., Exploring the Role of Cell Wall-Related Genes and Polysaccharides during Plant Development, Plants, vol.7, issue.2, p.42, 2018.

D. Franke and D. I. Svergun, DAMMIF, a program for rapidab-initioshape determination in small-angle scattering, Journal of Applied Crystallography, vol.42, issue.2, pp.342-346, 2009.

P. Weinkam, J. Pons, and A. Sali, Structure-based model of allostery predicts coupling between distant sites, Proceedings of the National Academy of Sciences, vol.109, issue.13, pp.4875-4880, 2012.

M. Lilic, M. Vujanac, and C. E. Stebbins, A Common Structural Motif in the Binding of Virulence Factors to Bacterial Secretion Chaperones, Molecular Cell, vol.21, issue.5, pp.653-664, 2006.

P. Roblin, P. Lebrun, P. Rucktooa, F. Dewitte, Z. Lens et al., The structural organization of the N-terminus domain of SopB, a virulence factor of Salmonella, depends on the nature of its protein partners, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1834, issue.12, pp.2564-2572, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02644404

W. X. Kabsch, XDS, Acta Crystallographica Section D Biological Crystallography, vol.66, issue.2, pp.125-132, 2010.

A. J. Mccoy, R. W. Grosse-kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni et al., Phasercrystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-674, 2007.

M. Sandgren, Comparison of family 12 glycoside hydrolases and recruited substitutions important for thermal stability, Protein Science, vol.12, issue.4, pp.848-860, 2003.

M. Sandgren, G. I. Berglund, A. Shaw, J. Ståhlberg, L. Kenne et al., Crystal Complex Structures Reveal How Substrate is Bound in the ?4 to the +2 Binding Sites of Humicola grisea Cel12A, Journal of Molecular Biology, vol.342, issue.5, pp.1505-1517, 2004.

G. Sulzenbacher, L. F. Mackenzie, K. S. Wilson, S. G. Withers, C. Dupont et al., The Crystal Structure of a 2-Fluorocellotriosyl Complex of theStreptomyceslividansEndoglucanase CelB2 at 1.2 Å Resolution?,?, Biochemistry, vol.38, issue.15, pp.4826-4833, 1999.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.

A. A. Vagin, R. A. Steiner, A. A. Lebedev, L. Potterton, S. Mcnicholas et al., REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2184-2195, 2004.

P. V. Afonine, R. W. Grosse-kunstleve, N. Echols, J. J. Headd, N. W. Moriarty et al., Towards automated crystallographic structure refinement with phenix.refine, Acta Crystallographica Section D Biological Crystallography, vol.68, issue.4, pp.352-367, 2012.

D. Liebschner, P. V. Afonine, N. W. Moriarty, B. K. Poon, O. V. Sobolev et al., Polder maps: improving OMIT maps by excluding bulk solvent, Acta Crystallographica Section D Structural Biology, vol.73, issue.2, pp.148-157, 2017.

D. K. Kidby and D. J. Davidson, A convenient ferricyanide estimation of reducing sugars in the nanomole range, Analytical Biochemistry, vol.55, issue.1, pp.321-325, 1973.

G. David and J. Pérez, Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline, Journal of Applied Crystallography, vol.42, issue.5, pp.892-900, 2009.

D. Franke, M. V. Petoukhov, P. V. Konarev, A. Panjkovich, A. Tuukkanen et al., ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions, Journal of Applied Crystallography, vol.50, issue.4, pp.1212-1225, 2017.

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. Koch, and D. I. Svergun, PRIMUS: a Windows PC-based system for small-angle scattering data analysis, Journal of Applied Crystallography, vol.36, issue.5, pp.1277-1282, 2003.

D. I. Svergun, Determination of the regularization parameter in indirect-transform methods using perceptual criteria, Journal of Applied Crystallography, vol.25, issue.4, pp.495-503, 1992.

V. V. Volkov and D. I. Svergun, Uniqueness ofab initioshape determination in small-angle scattering, Journal of Applied Crystallography, vol.36, issue.3, pp.860-864, 2003.

M. B. Kozin and D. I. Svergun, Automated matching of high- and low-resolution structural models, Journal of Applied Crystallography, vol.34, issue.1, pp.33-41, 2001.

G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen, Journal of Molecular Biology, vol.267, issue.3, pp.727-748, 1997.